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Abstract—Recently, in-memory big data processing frame-
works have emerged, such as Apache Spark and Ignite, to
accelerate workloads requiring frequent data reuse. With ef-
fective in-memory caching these frameworks eliminate most
of I/O operations, which would otherwise be necessary for
communication between producer and consumer tasks. However,
this performance benefit is nullified if the memory footprint
exceeds available memory size, due to excessive spill and garbage
collection (GC) operations. To fit the working set in memory,
two system parameters play an important role: number of data
partitions (Npartitions) specifying task granularity, and number
of tasks per each executor (Nthreads) specifying the degree of
parallelism in execution. Existing approaches to optimizing these
parameters either do not take into account workload character-
istics, or optimize only one of the parameters in isolation, thus
yielding suboptimal performance. This paper introduces WASP,
a workload-aware task scheduler and partitioner, which jointly
optimizes both parameters at runtime. To find an optimal setting,
WASP first analyzes the DAG structure of a given workload,
and uses an analytical model to predict optimal settings of
Npartitions and Nthreads for all stages based on their computation
types. Taking this as input, the WASP scheduler employs a hill
climbing algorithm to find an optimal Nthreads for each stage,
thus maximizing concurrency while minimizing data spills and
GCs. We prototype WASP on Spark and evaluate it using six
workloads on three different parallel platforms. WASP improves
performance by up to 3.22× and reduces the cluster operating
cost on cloud by up to 40%, over the baseline following Spark
Tuning Guidelines and provides robust performance for both
shuffle-heavy and shuffle-light workloads.

I. INTRODUCTION

Recently, the in-memory processing paradigm has been

embraced by big data analytics frameworks, such as Apache

Spark [1] and Ignite [2]. For example, Spark is reported

to achieve much higher performance than Hadoop MapRe-

duce [3] by up to 100× for those workloads with frequent

data reuse [1]. Resilient Distributed Datasets (RDDs) [4] are

the basic data structure of Spark, which allow a programmer to

cache intermediate data in fast memory instead of writing them

to slow disks. The arduous task of providing fault tolerance,

data distribution, load balancing, and scheduling is handled

by these frameworks; thus, the programmer can focus on the

logic of the program instead of parallel execution details.

However, these in-memory data analytics frameworks are

prone to severe performance degradation if the system runs

§These authors contributed equally to this work.

out of memory. In case of Spark, the main memory is shared

by cached RDDs as well as other heap objects of Java Virtual

Machine (JVM). Once memory is nearly full, it triggers a large

number of disk spills (i.e., serializing and storing JVM objects

to the local disk) and GCs, which nullify the performance

benefit of in-memory processing. Shuffle operations are known

to be particularly susceptible to this slowdown [5], [6], thus

requiring careful optimization in memory usage.

There are two runtime parameters that have profound impact

on memory usage in Spark and hence its performance: task

granularity and degree of parallelism. The first parameter,

denoted by Npartitions, specifies how many data partitions

are created from a single RDD, where a single task processes

one partition. If this parameter is set too low (i.e., too few

partitions), it can cause excessive spills and GCs by increasing

memory pressure; if too high, it incurs significant overhead

for scheduling and shuffle operations. The second parameter,

denoted by Nthreads, specifies how many threads are allocated

to a single executor, where each thread executes one task

at a time. Setting this parameter too low yields suboptimal

performance due to underutilization of processing elements;

setting it too high degrades performance due to increased

memory pressure and other resource contentions. Thus, these

parameters should be carefully tuned by considering both

hardware resources and workload characteristics to achieve

optimal performance.

Existing proposals to address this problem either do not

take into account workload characteristics or optimize a single

parameter in isolation, to yield suboptimal performance. For

example, Spark Tuning Guidelines [7], [8], [9] recommend the

user should set both Npartitions and Nthreads as a function of

the number of processor cores without considering workloads.

Furthermore, a single set of Npartitions and Nthreads is used

by the entire program even if optimal parameter settings can

vary widely among RDDs in a single program. Existing opti-

mizers for these parameters optimize either Npartitions [10],

[11], [12] or Nthreads [5], [13], [14] in isolation, but not both.

This leads to suboptimal performance as the two parameters

are not independent, and selection of one parameter directly

affects the optimal setting for the other.

In this paper we argue for jointly optimizing both

Npartitions and Nthreads at runtime by considering both

workload characteristics (RDD graph and input data) and the
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val sc = new SparkContext(sparkConf)val data = sc.textFile(“hdfs://.../input.txt").map(…)val partitioner = new BaseRangePartitioner(data, …)val sorted_data = data.sortByKey(partitioner, …)

spark.default.parallelism 4
SPARK_WORKER_CORES = 2
SPARK_WORKER_INSTANCES = 2

Fig. 1. Spark execution model

execution environment. To realize this, we propose WASP, a

workload-aware task scheduler and partitioner for in-memory

MapReduce frameworks. WASP first analyzes the DAG struc-

ture of a given workload and uses an analytical model that

predicts an optimal setting of Npartitions and Nthreads for

each stage based on both workload and platform parameters.

Taking this as input, the GC-aware task scheduler further opti-

mizes Nthreads during task execution via runtime monitoring

of individual tasks. Thus, WASP maximizes CPU utilization

while minimizing the overhead of data spills and GCs.
We prototype WASP on Spark and evaluate it using six

applications from the HiBench benchmark suite [15] on two

native parallel platforms and a cluster of virtual machines

(VMs) on Amazon Elastic Compute Cloud (EC2) [16]. WASP

improves the performance by up to 3.22× over the baseline

configuration following Spark Tuning Guidelines [7], [8] with

a geomean speedup of 1.74× on a 4-node native cluster with

64 fat cores (Intel Xeon) and 1.56× on a single-node machine

with 64 thin cores (Intel Xeon Phi). These numbers fall within

6.3% and 12.3% of the static optimal configuration based

on an impractical three-dimensional exhaustive search in the

parameter space, respectively. Furthermore, WASP achieves a

geomean (maximum) speedup of 1.31× (1.67×) for a 64-node

VM cluster on Amazon EC2, which translates to a reduction

of the operating cost by 24% (40%) over the baseline.
In summary, this paper makes the following contributions:

• Introduction of an effective analytical model that predicts

optimal Npartitions and Nthreads values for in-memory

MapReduce frameworks

• Design and implementation of the WASP scheduler on

Spark, which maximizes task concurrency (and hence

CPU utilization) at runtime, while minimizing disk spills

and GCs

• Detailed evaluation and analysis of WASP performance

on two native parallel platforms (4-node cluster with 64

fat cores (Intel Xeon) and single-node machine with 64

thin cores (Intel Xeon Phi [17])) and one virtual platform

(64-node VM cluster with 256 fat cores (Intel Xeon))

The rest of this paper is organized as follows: Section II

presents backgrounds and motivates this work. Section III

describes the design and implementation of WASP. Section IV

and V provide our evaluation setup and performance results,

followed by discussion of related work in Section VI. Finally,

Section VII summarizes the conclusion.

II. BACKGROUND AND MOTIVATION

A. Spark Execution Model

Spark employs a dataflow execution model, where a se-

quence of operations are performed on resilient distributed
datasets (RDDs) [4]. RDDs are the primary data abstraction

for Spark, which provide fault tolerance as well as efficient

in-memory caching in a distributed environment. Spark op-

erations are divided into two categories: transformations and

actions. A transformation defines a new RDD to add to a

directed acyclic graph (DAG) representing the execution plan

(called lineage in a Spark term), which is executed lazily. An

action is an operation that exports data to a storage system or

returns a result to the main (driver) program, such as saving

an RDD to a file and collecting an RDD to print its contents

to the console. Every action in a user program will create

a Spark job, which may consist of multiple transformations.

Only when an action is called, Spark starts execution of the

job made up of the DAG.

Fig. 1 illustrates the Spark execution model using TeraSort

from HiBench benchmark suite [15] as an example. A Spark

application consists of a driver program and a pool of execu-

tors distributed over multiple cluster nodes. The user program

typically begins with creating a Spark context by invoking

SparkContext(). In response to an action (not shown in

Fig. 1), a job is created with a sequence of transformations

recorded so far. The DAG scheduler receives this job and splits

it into multiple stages at every shuffle boundary. A shuffle is

an operation that exchanges data between a pair of mapper

and reducer stages, where the mapper stage writes its output

into the local disk and the reducer stage pulls it from remote

disks over the network. An RDD is partitioned into a set of

immutable blocks (or partitions) and distributed across worker

nodes. For every stage of the Spark job, a set of tasks are

created, which apply the same lineage of transformations to

different RDD partitions. These task sets are passed to a task

scheduler which schedules tasks to a collection of executors

running on multiple worker nodes.
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Fig. 2. Normalized speedups over the baseline with varying parameter settings of Npartitions and Nthreads

Spark Memory is the memory pool managed by

Spark, whose size is controlled by the parameter

spark.memory.fraction. By default in Spark 1.6.1 this

parameter is set to 75% of the JVM heap space; the remaining

space is User Memory, which the user can allocate for any

auxiliary data structures. Spark Memory is divided into

storage memory and execution memory, which are equally

sized initially. The former is used for RDD caching, which is

particularly useful for iterative algorithms featuring frequent

data reuse, and the latter for Spark computations. Note that

the boundary between storage memory and execution memory

is soft, which means that one of the two regions can claim

the other’s space dynamically if it is underutilized.
However, the benefit of in-memory RDD caching and com-

putation is nullified due to expensive data spills if Spark Mem-

ory becomes (nearly) full. A spill occurs when Spark runs out

of executor memory. Once a spill is triggered by a task, Spark

serializes the partially generated output RDD for the task and

writes it to the local disk. Spills are expensive operations (more

detailed analysis available in Section II-B), and should be

avoided to achieve robust performance. To fit the working set

in memory, two runtime parameters play an important role:

Npartitions and Nthreads. The first parameter is Npartitions

((1) spark.default.parallelism in Fig. 1), which

determines how many partitions will be created from a single

RDD. This parameter controls the granularity of a task, and

hence the memory footprint of a single task. The second

parameter is Nthreads ((2) SPARK_WORKER_CORES in

Fig. 1), which determines how many tasks are processed

concurrently at each executor. This parameter controls the

concurrency of tasks, and hence the memory footprint at an

executor (and node) level. Therefore, these parameters should

be tuned carefully to achieve robust performance.

B. Finding Optimal Npartitions and Nthreads

To ensure high utilization of cluster resources, Spark pro-

vides a tuning guideline for both parameters: Npartitions and

Nthreads. The guideline says, “In general, we recommend 2-3

tasks per CPU core in your cluster” [7]. Thus, Npartitions

is set to be 2-3 times of the total number of CPU cores.

Nthreads controls the degree of parallelism (concurrency) in

task execution, which is set by SPARK_WORKER_CORES.

This parameter is set to use “all available cores” by default [8].

Although simple, this guideline has several problems. First

of all, both parameters are derived solely from a single

cluster parameter (i.e., number of CPU cores), which fail to

yield robust performance over a variety of workloads with

different characteristics. To confirm this point, we measure

speedups with varying both parameters on a 4-node Intel Xeon

cluster (having 64 cores in total) for two Spark applications

from HiBench: TeraSort and Bayesian Classification (Bayes).

The details of the cluster setup are available in Table I

in Section IV. Npartitions on X axis ranges from 64 to

2048 (8192 for TeraSort); the total number of worker threads

(16×Nthreads) on Y axis from 16 to 128.

Fig. 2 shows the speedups normalized to the baseline

configuration that follows the Spark tuning guideline. We use

a heat map to visualize speedups, and darker box is higher

speedup. The baseline configuration is marked by a black star

(�), and the best performing one by a white star (�� ). For both

workloads the baseline configuration is clearly suboptimal—

especially for TeraSort demonstrating a 3.64× performance

gap between the best and the baseline configurations. Besides,

the best configurations for the two workloads are far away

from each other as they have different workload character-

istics. For example, the best configuration for Bayes on the

upperleft corner yields worse performance than the baseline

(0.56×) for TeraSort. Thus, without considering workload

characteristics, it is difficult to find an optimal setting for these

parameters.

According to our analysis, the large performance gap for

TeraSort is attributed to excessive memory spills in the

baseline configuration. Fig. 3(a) shows an execution time

breakdown of the reduce stage (Stage 2 in Fig. 1), which

suffers the most slowdown, with varying Npartitions from 128

to 4096. If Npartitions is less than 1024, the spill overhead

dominates the execution time as the working set does not

fit in the execution memory of Spark. The spill time (when

Npartitions is 128) is further broken down in Fig. 3(b), which

shows the full GC time dominates it. This happens because

a spill operation takes a considerable amount of time due to
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Fig. 3. TeraSort performance analysis: (a) execution time breakdown of the
reduce stage; (b) spill time breakdown when Npartitions is 128

the overhead of serialization and disk writes, but the spilled

object in JVM’s old-generational heap space will not be freed

until the entire spill operation is completed. Meanwhile, Spark

keeps creating small heap objects, some of which get tenured

from a young-generational heap to the old-generational heap

to trigger frequent full GCs. Thus, in this case, it is highly

desirable to set Npartitions to a value large enough (i.e.,

≥1024) to eliminate spills and achieve good performance.

To address this problem, workload-aware optimizers for

Npartitions and Nthreads have been recently proposed for in-

memory MapReduce frameworks [10], [11], [12], [5], [13],

[14]. However, these optimizers tune either Npartitions [10],

[11], [12] or Nthreads [5], [13], [14] in isolation, but not

both. This leads to suboptimal performance. For example,

in Fig. 2, starting from the baseline configuration (marked

by �), TeraSort benefits more from optimizing Npartitions,

whereas Bayes more from optimizing Nthreads. By optimizing

only one of the two parameters, Spark cannot achieve good

performance for both workloads. Note that the selection of

one parameter directly affects the optimal setting for the other

as the two parameters are not independent. Thus, it is highly

desirable to jointly optimize both parameters in a single unified

framework to make best use of cluster resources without

causing excessive spills and GCs.

III. WORKLOAD-AWARE SCHEDULER AND PARTITIONER

This section presents the design and implementation of

WASP (Workload-Aware task Scheduler and Partitioner).

WASP is a low-cost runtime framework that jointly optimizes

both Npartitions and Nthreads for in-memory MapReduce

frameworks, to provide robust performance over a wide variety

of workloads.

A. Overview

Fig. 4 shows the overall structure of WASP, which consists

of two parts shaded in gray. The first component is an

analytical model that predicts an optimal setting of Npartitions

and Nthreads, derived from both workload and platform pa-

rameters (Section III-B). This model is executed whenever a

new job is created, and the predicted optimal parameter values

are annotated in the RDD graph before task execution begins.

The second component is GC-aware task scheduler, which

further optimizes Nthreads during task execution (Sec-

tion III-C). The proposed scheduler employs a feedback loop

Fig. 4. WASP overview

between the master node and worker nodes to find the max-

imum number of worker threads that can run concurrently

without causing excessive GCs. In this way WASP can find a

near-optimal parameter setting at a low-cost without perform-

ing an exhaustive search for each stage, whose cost would be

prohibitive.

B. Analytical Model

When a new job is created, the Spark runtime has complete

information about the RDD graph and input file(s) for the job.

Using this information WASP executes an analytical model

to predict an optimal setting for Npartitions and Nthreads for

each stage before invoking the DAG scheduler. The analytical

model takes a two-pass approach. The first pass predicts an ini-

tial setting for the two parameters (denoted by Npartitions(init)

and Nthreads(init)). These values are used as input to the

second pass, which employs a gradient search algorithm in

a two-dimensional parameter space using a simple analytical

model for stage execution time. As a result of executing the

second pass, we get an optimal parameter pair for each stage

that likely yields the minimum execution time.

First Pass: Calculating Npartitions(init) and Nthreads(init).
The relationship between the total number of partitions

(Npartitions) and the number of threads per executor

(Nthreads) for the k-th stage is described as follows:

Nthreads(k)(init) = max

(
Execution memory

RDD size k

Npartitions(k)(init)

, 1

)
(1)

where RDD size k is the maximum RDD size in the lineage

of the RDD graph of the k-th stage, and Execution memory
is the size of the available execution memory for a single
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Fig. 5. Memory Amplification Factors (MAF) for transformation functions

executor. The first term in the max() function calculates how

many tasks can be accommodated without causing a spill if

each task requires execution memory of the maximum RDD

partition size in the stage.

Assuming the k-th stage has a lineage of nk RDDs whose

transformation functions are fk
1 , fk

2 , ..., fk
nk

, RDD size k is

given as follows:

RDD size k = Input size k × max
1≤i≤nk

(
∏

MAF (fk
i )) (2)

where Input size k is the input RDD size for the stage and

MAF (fk
i ) is the memory amplification factor of the function

i. The memory amplification factor (MAF) of a transformation

function is defined as the ratio of the output RDD size

to the input RDD size after the transformation is applied.

Fig. 5 shows the MAF values for widely used transformation

functions. MAFs are estimated by performing linear regression

with various workloads (HiBench [15], SparkBench [18],

spark-perf [19], BigDataBench [20]) and inputs. Unlike other

transformation functions, outputs of various sizes are produced

even if the input size is similar. map() and flatMap()
generate values in a one-to-one, many-to-one, one-to-many,

and many-to-many manner, depending on user definition.

Note that these values are purely software parameters and

platform-independent. Thus, there is no need to measure these

values on individual platforms. The terms of maximum by

MAF (fk
i ) in (2) finds the maximum RDD size at the given

stage. The maximum RDD may be obtained in the middle (not

the end) of the stage as MAF (fk
i ) can be less than 1.

Now the only missing parameter in (2) is Input size k,

which is estimated as follows:

Input size k = Input F ile Size×
k−1∏
i=1

(

nj∏
j=1

MAF (f i
j)) (3)

where Input F ile Size is the input file size for the job.

Note that the second term as MAF has the value of multiplying

MAF values of all transformation functions from Stage 1

through k − 1. We use this formula to estimate the input

RDD size for Stage k. While this size can be measured more

precisely at runtime, re-partitioning the input RDD right before

Stage k has very high overhead, so we use an estimation model

ahead of execution to avoid this overhead.

Finally, assuming CPU is the performance bottleneck [21],

we set Nthreads(init) to be the number of available physical

cores per executor. Then, using (1), we obtain Npartitions(init).

Second Pass: Calculating Npartitions and Nthreads via
Gradient Search. In the second pass we first introduce

a simple analytical model of the execution time of Stage

k and use it to find an optimal setting of Npartitions and

Nthreads that minimize the execution time. For this we apply

a gradient search in the two-dimensional parameter space with

Npartitions(init) and Nthreads(init) (from the first pass) as a

starting point. The execution time of Stage k is estimated as

follows:

ExecT ime k ∝ RDD size k

Npartitions(k)
× α k × Npartitions(k)

Nthreads(k)
(4a)

∝ RDD size k × α k

Nthreads(k)
(4b)

where

α k = max

( RDD size k

Npartitions(k)
×Nthreads(k)

Execution memory
, 1

)
(5)

According to (4a), the execution time is proportional to

a product of the three terms. The first term quantifies the

granularity of a task using the partition size as a proxy

metric. The second term (α k) captures the cost of spills.

If the estimated memory footprint for an executor in the

numerator exceeds the size of the execution memory in the

denominator, data spills will prolong the execution time in

proportion to the ratio of the two; if not, α k in the (5)

has no impact. Finally, the third term calculates how many

rounds it takes to execute the stage, assuming each round

completes Nthreads tasks. WASP uses this model to perform a

gradient search that quickly finds a local optimum of the exe-

cution time. Starting at (Npartitions(k)(init), Nthreads(k)(init)),
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TABLE I
SETUP FOR THREE EVALUATION PLATFORMS

Native cluster Knights Landing (KNL) Amazon Web Services EC2
System configurations

Server Dell R730 × 4 (+ 1 master) SuperServer 5038k-i m4.xlarge VM × 64 (+ 1 master)

CPU
Intel Xeon CPU E5-2640v3
8 cores @ 2.60GHz × 2 sockets

Intel Xeon Phi (Knights Landing) 7210
64 cores @ 1.30GHz

Intel Xeon CPU E5-2676v4
4 cores @ 2.4GHz

Memory 16GB DDR4 × 8 16GB MCDRAM & 32GB DDR4 × 6 16GB
Disk NVMe SSD 1.6TB NVMe SSD 1.6TB EBS 100GB

Network 40Gbps InfiniBand 1Gbps Ethernet 10Gbps Ethernet
OS Ubuntu 14.04 LTS CentOS Linux release 7.2.1511 Ubuntu Server 16.04 LTS

Spark configurations
# of worker nodes 4 1 64

# of executors / node 4 (16 executors in total) 4 (4 executors in total) 1 (64 executors in total)
Spark memory / executor 5GB 20GB 10GB

Nthreads 4 (64 threads in total) 16 (64 threads in total) 4 (256 threads in total)
Npartitions 128 128 512

Algorithm 1 Determining analytical Npartitions and Nthreads

INPUT: RDD size, # of cores, size of executor memory
OUTPUT: <Npart(k), Nthd(k)>

1: Estimate Npart(k)(init) and Nthd(k)(init) from (1)
2: Set initial ExecTimek from (4a)
3: <Npart(k), Nthd(k)> = <Npart(k)(init), Nthd(k)(init)>
4: minExecTime = ExecTimek
5: do
6: for rotate 8 directions (closest neighboring values) do
7: calculate ExecTimenew
8: if ExecTimenew < minExecTime then
9: minExecTime = ExecTimenew

10: <Npart(k), Nthd(k)> = <Npart(k)(new), Nthd(k)(new)>
11: end if
12: end for
13: while minExecTime / ExecTimek < 0.9

WASP compares its execution time with eight neighbor-

ing configurations in the two-dimensional parameter space,

enclosed by (Npartitions(k)(init)/2, Nthreads(k)(init)/2) and

(Npartitions(k)(init)×2, Nthreads(k)(init)×2). If there is no

other configuration whose execution time is estimated to be

>10% smaller than the one at the center, the search process

is terminated. If not, the configuration with the smallest

execution time becomes the new center, and WASP repeats

this search process until either of the two termination condi-

tions is satisfied. Note that a large Npartitions increases the

cost of shuffles. Thus, WASP finds the minimum number of

Npartitions that do not cause GCs and spills. Equation (5)

shows that the value of Npartitions is upper-bounded by

RDDsizek×Nthreads(k)/Execution memory to prevent the

situation of creating too many partitions. Algorithm 1 sum-

marizes the two-pass procedure of predicting Npartitions and

Nthreads.

C. Garbage Collection-Aware Task Scheduler

Once the analytical model in Section III-B estimates the

Npartitions and Nthreads for each stage, these parameters

are passed to the DAG scheduler, which is responsible for

partitioning the Spark job into stages of tasks. Then the

task set is passed to the task scheduler, and executors start

executing multiple tasks in parallel. However, these parameters

are derived from a simple analytical model, and the runtime

environment may vary widely to make them suboptimal. Note

that the design objective of WASP is to maximize the degree

of parallelism without causing excessive spills and GCs, hence

maximizing CPU utilization.

Thus, WASP employs a GC-aware task scheduler to further

optimize Nthreads at runtime. While changing Npartitions

at runtime requires costly re-partitioning of the entire RDD

adjusting Nthreads can be easily done. WASP exploits a thread

pool provided by Spark, to allow us to adjust the number

of threads easily as there are no data dependences among

concurrent tasks, obviating the need for such synchronization.

To realize this, WASP creates a feedback loop between the

master and worker nodes. Upon completion of the last task of

a round (with Nthreads tasks, initially), the task scheduler on

the master node monitors the fraction of execution time spent

for GC operations. If the GC time is less than a threshold (20%

of total execution time by default in Section V-D), Nthreads is

multiplied by a factor of 2 until it reaches the upper-bound of

Nthreads, which is set to 2× of the total number of (logical)

cores. If (1) the GC time goes above the threshold, or (2) the

execution time itself increases by more than 20%, Nthreads is

decrementing by one at the next round. Note that the second

condition is included to detect any straggler task [21]. The

thread count keeps decrementing until the GC time goes below

the threshold again or the stage is finished.

IV. METHODOLOGY

To demonstrate the effectiveness of WASP, we evaluate it

in three different execution environments as shown in Table I.

The same versions of software packages are used for all three:

Hadoop version 1.2.1, Spark version 1.6.1, and OpenJDK

version 1.7.0 111. The default settings are used unless noted

otherwise. The platform setups are summarized as follows:

Native 4-node cluster with 64 fat cores. A single node

has two Intel Xeon E5-2640v3 CPUs running at 2.60GHz,

each of which has 8 physical cores (16 logical cores via

Hyper-Threading). The node has a 1TB hard disk for the

host OS (Ubuntu 14.04 LTS) and a 1.6TB NVMe SSD for

HDFS and Spark shuffle operations. Master and worker nodes
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TABLE II
WORKLOAD CHARACTERISTICS

Workloads Domain Data Size
Cluster Intel KNL AWS EC2

Shuffle-heavy
TeraSort Sorting 128GB 80GB 1TB

PageRank Web search
pages: 25M
iterations: 3

pages: 15M
iterations: 3

pages: 100M
iterations: 3

Sort Sorting 128GB 80GB 1TB

Shuffle-light
WordCount Text processing 240GB 128GB 5TB

Bayesian Classification Machine learning
pages: 20M
classes: 20K

pages: 10M
classes: 10K

pages: 160M
classes: 160K

Kmeans Machine learning
samples: 200M

samples / input: 30M
max iterations: 5

samples: 150M
samples / input: 30M

max iterations: 5

samples: 400M
samples / input: 60M

max iterations: 5

are connected by 40Gbps InfiniBand links. We choose to

create four executors per node as this configuration yields

the best out-of-the-box performance; we observe performance

degradation with more executors on this cluster [22]. To fully

utilize CPU cores, each executor runs on four physical cores.

Native manycore machine with 64 thin cores. We also eval-

uate WASP on Intel’s Knights Landing (KNL) machine [17].

The CPU model is Intel Xeon Phi 7210 running at 1.30GHz,

which has 64 physical cores (and 256 logical cores via 4-way

Hyper-Threading). KNL features a near-far memory system

composed of wide in-package 16GB MCDRAM and narrow

off-package 192GB DDR4 DRAM. We use MCDRAM in the

default cache mode.

Virtual 64-node cluster on Amazon Web Services EC2. We

also evaluate the robustness and scalability of WASP in a cloud

environment by using a virtualized 64-node Spark cluster on

Amazon EC2. We use the m4.xlarge VM image and create one

executor per node (i.e., 64 executors in total). Each executor

is allocated four threads with a 10GB of Spark Memory.

For workloads we use six applications from Intel’s Hi-

Bench suite 5.0 [15]. Among the 10 Spark applications in

HiBench, three SQL applications (Join, Scan, and Aggre-

gate) are excluded because they process a SQL query using

HiveContext, instead of SqlContext, in an opaque

manner; if the query was processed in a Spark SQL context,

WASP would be readily applicable to those applications. We

also exclude Sleep as it is a micro-benchmark with no real

computations.

Table II summarizes workload characteristics and inputs for

the six applications. We classify them into two categories

based on the amount of shuffled data: shuffle-heavy and

shuffle-light. For Intel KNL we use smaller inputs than those

for the 4-node cluster, which would generate excessive task

failures for the baseline configuration. We take an average

of three measurements for every data point except for the

KNL machine, for which we take the minimum of the three

measurements as KNL suffers frequent task failures causing

wide variations of execution time.

We compare WASP to the following four designs:

• Baseline. This is the out-of-the-box Spark following

Spark Tuning Guidelines [7]. Thus, Nthreads is set to

fully utilize the available physical cores, and Npartitions

to run two tasks per CPU core as shown in Table I.

• 2-D Exhaustive Nthreads. We perform a two-

dimensional exhaustive search (stage, Nthreads) to find

the best-performing Nthreads for each stage and use the

same Npartitions as in the baseline. This configuration

yields the theoretical maximum performance for the op-

timizers that tune Nthreads in isolation [5], [13], [14].

• 2-D Exhaustive Npartitions. Again, we perform a two-

dimensional exhaustive search (stage, Npartitions) to find

the best-performing Npartitions for each stage and use

the same Nthreads as in the baseline. This configuration

yields the theoretical maximum performance for the opti-

mizers that tune Npartitions in isolation [10], [11], [12].

• 3-D optimal. We perform a three-dimensional exhaustive

search (stage, Npartitions, Nthreads) to find the best-

performing pair of Npartitions and Nthreads for each

stage. This number serves as the (impractical) theoretical
maximum performance that can be achieved by optimiz-

ing these two parameters.

V. EVALUATION

A. Results on Native 4-node Cluster

Fig. 6(a) compares the speedups of the five designs in

Section IV, normalized to the baseline. WASP achieves a

geomean speedup of 1.74×, with a maximum speedup of

3.22×. WASP outperforms 2-D Exhaustive Npartitions and

Nthreads by 1.11× and 1.44×, respectively, which represent

the performance upper bound of optimizing one parameter in

isolation. More importantly, regardless of the workload type,

WASP achieves robust performance comparable to the best of

both 2-D Exhaustive Npartitions and 2-D Exhaustive Nthreads.

Following is the discussion of both types of workloads in

greater details.

Shuffle-heavy workloads. The first three applications in

Fig. 6(a) are shuffle-heavy workloads, which exchange a large

volume of data between stages. For example, both TeraSort

and Sort use a sortByKey transformation, which shuffles the

entire RDD. In PageRank a shuffle is preceded by transforma-

tions that amplify memory footprint (i.e., MAF>1), such as

flatMap and map, to further increase the overhead. Since

these shuffle-heavy workloads usually take large memory

footprint, their performance is more sensitive to a change in
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Fig. 6. Normalized speedups for six workloads on two native platforms: native 4-node cluster and single-node manycore platform (Intel KNL)

Fig. 7. Execution time breakdown of the reduce stage for shuffle-heavy
workloads; each bar shows the average execution time of equivalent task(s)
processing a 1/128 of the RDD.

Npartitions. Thus, optimizing Nthreads alone yields relatively

poor performance; even with a stage-wise exhaustive search

2-D Exhaustive Nthreads achieves only a 1.22× geomean

speedup for the three applications. In contrast, WASP achieves

a 2.43× geomean speedup, which is comparable to 2-D

Exhaustive Npartitions (with a 2.36× geomean speedup), but

without requiring a costly exhaustive search.

To identify the sources of improvement, Fig. 7 shows an

execution time breakdown of the reduce stages for the three

workloads. The primary source of performance improvement

with WASP is a reduction in the amount of spilled data, which

eliminates most of long GCs. As a result, WASP reduces the

GC time of TeraSort 91%, for example. Besides, the compute

time is also reduced by 37% as WASP further increases task

concurrency by maximizing Nthreads while maintaining a low

overhead of GCs. The benefits of optimizing Nthreads are most

pronounced in Sort, for which the compute time is reduced by

81%. For PageRank, WASP effectively reduce both compute

and GC times for Stage 2 through 4, which dominate the total

execution time.

Shuffle-light workloads. The next three applications in

Fig. 6(a) are classified as shuffle-light. These workloads con-

sist of several Spark jobs, most of which have a single stage.

The overhead of shuffles is small for them, as a shuffle is

triggered by a summarizing function with low MAF (e.g.,

reduceByKey) to reduce the volume of exchanged data.

Fig. 8. Normalized speedups and operating cost on cloud for 64-node Amazon
EC2 cluster

Therefore, these workloads are characterized by very low spill

overhead, and optimizing Nthreads has much greater impact

on performance. As a result, 2-D Exhaustive Npartitions yields

only a marginal performance gain with a 1.05× geomean

speedup. In contrast, WASP achieves more substantial per-

formance improvement with a geomean speedup of 1.25×.

This number is comparable to 2-D Exhaustive Nthreads with

a 1.21× geomean speedup. Note that the geomean speedup of

3-D Optimal is 1.31×, which is not far off from WASP. For

Kmeans all five designs demonstrate similar performance as

the baseline configuration works well.

B. Results on 64-core Intel Knights Landing Machine

Fig. 6(b) shows the performance speedups on a 64-core

Intel KNL platform. For the baseline the default parameters

of Npartitions and Nthreads in Table I are used except for

TeraSort and Sort. Since these two applications do not run to

completion with the baseline configuration due to excessive

task failures, we use higher Npartitions’s to keep the number

of task failures reasonable. More specifically, Npartitions is

set to 288 for TeraSort and 224 for Sort for the baseline.

Preventing excessive task failures is crucial to achieve robust

performance on KNL.

Overall, WASP also works well on the single-node many-

core system with a geomean speedup of 1.56× and a max-

imum speedup of 3.18×. WASP achieves comparable per-

formance to the best of both 2-D Exhaustive Npartitions

and 2-D Exhaustive Nthreads, whose geomean speedups are

1.45× and 1.46×, respectively. Like the 4-node cluster in Sec-

tion V-A, optimizing Npartitions (Nthreads) is more important
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Fig. 9. Spill-aware scheduler vs. GC-aware scheduler

for shuffle-heavy (shuffle-light) workloads. Thus, optimizing

one of the two parameters in isolation is clearly suboptimal.

In contrast, WASP adapts to the workload without employing

a costly exhaustive search. Furthermore, WASP effectively

eliminates most of task failures, thus improving performance.

C. Results on 64-node Amazon EC2 Cluster

Finally, we evaluate WASP on a 64-node Amazon EC2 clus-

ter. Using this platform we aim to characterize the performance

robustness and scalability of WASP in a virtualized execution

environment at a larger scale. Besides, we quantify the cost

reduction in cloud brought by the improved performance,

which we calculate from the bills charged by Amazon.

Fig. 8 shows both performance improvements and cost

savings using a virtualized Spark cluster with 64 worker nodes.

WASP shows a geomean speedup of 1.31× with a maximum

speedup of 1.67× for TeraSort. This translates to an average

reduction of the Spark cluster operating cost on cloud by 24%
over the baseline, with a maximum reduction of 40%.

D. Performance Analysis

Spill-aware scheduler vs. GC-aware scheduler. It is our

design decision for WASP to adopt GC-aware scheduling at

runtime, instead of spill-aware scheduling. Our finding is that

excessive GCs are the primary factor to slow down Spark

applications at high memory usage, and that a small amount

of spills are tolerable to maximize task concurrency. A spill-

aware scheduler like [5] yields suboptimal performance due

to too conservative setting of Nthreads.

Fig. 9 compares the performance of WASP with the spill-

aware scheduler [5]. The spill-aware scheduler conservatively

limits Nthreads when the first spill is detected. In contrast,

WASP continues to increase Nthreads until the overhead of GC

time reaches a certain threshold. For the three shuffle-heavy

workloads, WASP outperforms the spill-aware scheduler by

57% on average. Thus, we conclude that the GC time is a

better metric to estimate memory pressure than the amount of

spills.

Sensitivity on GC threshold. GC threshold is an important

system parameter for WASP. Setting it too low limits task

concurrency by capping Nthreads too conservatively; setting

it too high incurs larger GC overhead. Thus, we perform

a sensitivity analysis over this parameter. Fig. 10 shows

Fig. 10. Performance change with varying GC threshold. All numbers are
normalized to the baseline.

speedups of the three shuffle-heavy workloads with varying

GC thresholds from 10% through 50% of execution time.

Our experiment demonstrates that 20% is the optimal value

balancing task concurrency and GC overhead. Therefore, We

select this value as default.

Impact on CPU utilization and GC time. Fig. 11 shows

the runtime behaviors of the baseline and WASP using two

workloads: TeraSort (shuffle-heavy) and Bayes (shuffle-light).

There are two graphs in each subgraph: CPU utilization and

GC time sampled at a regular time interval. In Fig. 11(a),

although maintaining high CPU utilization, TeraSort wastes

a significant portion of CPU cycles for GCs. In contrast,

WASP in Fig. 11(b) effectively reduces the GC time to spend

most of CPU cycles for useful work, which is the primary

source of performance improvement. Bayes is a shuffle-light

workload causing a very small number of GCs. Thus, it is

more important to increase CPU utilization by optimizing

Nthreads. In Fig. 11(c) the baseline achieves some 50% of

CPU utilization. However, WASP demonstrates about 80%

of CPU utilization by runtime optimization of Nthreads (in

Fig. 11(d)). Note that the CPU utilization is dropped at the

end of a job, which is shown in both graphs.

VI. RELATED WORK

Guidelines for Spark performance tuning. Spark Tuning

Guidelines provide best practices for parameter tuning to fully

utilize hardware resources [7], [9], [23]. However, those pa-

rameters, including Npartitions and Nthreads, are typically set

at program launch without considering workload and platform

characteristics, thus leading to suboptimal performance. Tous

et al. [24] performs an in-depth performance analysis for

two benchmarks, Kmeans and sortByKey, to understand the

impact of parameter setting on Spark performance in an HPC

environment. Likewise, Gounaris et al. [25] investigate the

impact of the most important tunable Spark parameters for

shuffling, compression, and serialization, on application per-

formance to guide parameter setting. However, unlike WASP,

both guidelines do not take into account runtime behaviors

(e.g., amount of spills and GCs) and use a single set of

parameters for the entire application.

Fine-grained tuning of Nthreads. Jia et al. [14] propose

a prediction-based dynamic SMT threading (PBDST) frame-

work, which dynamically adjusts Nthreads at each stage. Their

prediction model for Nthreads takes microarchitectural event
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Fig. 11. Resource utilization of baseline and WASP for TeraSort and Bayes

counters, such as cache miss rate, branch miss rate, as input,

but fails to capture software-level events, such as GCs, spills,

and straggler tasks. Kc et al. [13] propose to adjust Nthreads

in Hadoop [3] at runtime based on the degree of resource con-

tention. However, their proposal does not consider Npartitions

to yield suboptimal performance, especially for shuffle-heavy

workloads. Pei et al. [5] propose a spill-aware scheduler to

adjust Nthreads by estimating memory pressure. We have

demonstrated the GC-aware scheduler of WASP yields better

performance in Section V-D. Finally, Shi et al. [26] propose a

memory usage rate-based scheduler (MURS), which suspends

heavy tasks and/or adjust Nthreads to reduce memory pressure

in an multi-application environment, which is orthogonal to

our work.

Fine-grained tuning of Npartitions. There are many propos-

als that address the problem of suboptimal data partitioning

in MapReduce frameworks [27], [3], to reduce the cost of

shuffles. Paul et al. [10] propose CHOPPER to optimally re-

partition RDDs using workload DB, thus yielding minimum

data skew across tasks. Gounaris et al. [11] propose a novel

algorithm to dynamically adjust Npartitions based on an

analytical cost model to minimize resource usage without

degrading performance. GraphChi [12] is a disk-based graph

processing engine that partitions data at runtime for efficient

use of memory. If a data partition, called shard, is too large to

fit in memory, GraphChi breaks the interval associated with the

shard into several sub-intervals (i.e., increasing Npartitions)

to reduce memory pressure. Chen et al. [28] propose Tiled-

MapReduce, which provides data-parallelism to a multicore

system by partitioning a large MapReduce job into small sub-

jobs to reduce hardware resource contentions, such as cache

and memory bandwidth. However, all the aforementioned

proposals yield suboptimal performance as they optimize

Npartitions only without considering Nthreads, especially for

shuffle-light workloads.

General-purpose Nthreads tuning frameworks. There are

proposals for finding an optimal Nthreads for a given parallel

program, based on runtime monitoring [29], [30], [31] and

offline profiling [32]. DoPE [29] and Parcae [30] are compiler-

assisted runtime systems that dynamically adjust Nthreads

on multicore CPUs. They also extract the multiple types

parallelism from an application and reconfigure the parallel

execution mode based on runtime monitoring. PD [31] is

similar to DoPE and Parcae in spirit, but improves resource uti-

lization by removing pause time for reconfiguration. However,

these frameworks optimize Nthreads in isolation, and do not

take into account memory usage-related issues (e.g., GCs and

spills) pertinent to the performance of in-memory MapReduce

frameworks.

VII. CONCLUSION

This paper proposes WASP, a workload-aware task sched-

uler and partitioner for in-memory MapReduce frameworks,

which jointly optimizes both Npartitions and Nthreads at

runtime. Whenever a new Spark job is created, WASP ex-

ecutes an analytical model that predicts optimal settings of

Npartitions and Nthreads for all of its stages based on their

computation types. The GC-aware task scheduler of WASP

takes this as input to further optimize Nthreads during task

execution to maximize CPU utilization while minimizing the

overhead of data spills and GCs. Our evaluation of WASP on

two native platforms and a cluster of VMs on Amazon EC2

with 6 HiBench applications demonstrates promising results.

WASP improves the performance by up to 3.22× over the

baseline configuration following Spark Tuning Guidelines with

a geomean speedup of 1.74× on a 4-node cluster with 64 fat

cores and 1.56× on a single-node machine with 64 thin cores.

WASP also improves the performance by 1.31× on average

while reducing the operating cost by up to 40% on a 64-node

Amazon EC2 cluster. WASP allows a Spark user to focus on

program logic instead of tedious tasks of parameter tuning.



140

ACKNOWLEDGEMENTS

This work was supported by a research grant from Samsung

Electronics and by Institute for Information & communications

Technology Promotion (IITP) grant funded by the Korea

government (MSIT) (No. B0101-17-0644, Research on High

Performance and Scalable Manycore OS).

REFERENCES

[1] “Apache Spark,” http://spark.apache.org/.
[2] “Apache Ignite,” https://ignite.apache.org/.
[3] “Apache Hadoop,” http://hadoop.apache.org/.
[4] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,

M. J. Franklin, S. Shenker, and I. Stoica, “Resilient Distributed Datasets:
A Fault-tolerant Abstraction for In-memory Cluster Computing,” in
Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’12. USENIX Association, 2012,
pp. 2–2.

[5] C. Pei, X. Shi, and H. Jin, Improving the Memory Efficiency of In-
Memory MapReduce based HPC Systems. Springer International
Publishing, 2015, pp. 170–184.

[6] B. Nicolae, C. Costa, C. Misale, K. Katrinis, and Y. Park, “Towards
Memory-optimized Data Shuffling Patterns for Big Data Analytics,” in
2016 16th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), May 2016, pp. 409–412.

[7] “Apache Spark: Tuning Spark,” http://spark.apache.org/do
cs/latest/tuning.html/.

[8] “Apache Spark: Spark Configuration,” http://spark.apache.o
rg/docs/latest/configuration.html/.

[9] “How-to: Tune Your Apache Spark Jobs,” http://blog.cloude
ra.com/blog/2015/03/how-to-tune-your-apache-spark
-jobs-part-1/.

[10] A. K. Paul, W. Zhuang, L. Xu, M. Li, M. M. Rafique, and A. R.
Butt, “CHOPPER: Optimizing Data Partitioning for In-memory Data
Analytics Frameworks,” in 2016 IEEE International Conference on
Cluster Computing (CLUSTER), Sept 2016, pp. 110–119.

[11] A. Gounaris, G. Kougka, R. Tous, C. Tripiana, and J. Torres, “Dynamic
Configuration of Partitioning in Spark Applications,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 7, pp. 1891–1904, 2017.

[12] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-scale Graph
Computation on Just a PC,” in Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation, ser.
OSDI’12. USENIX Association, 2012, pp. 31–46.

[13] K. Kc and V. W. Freeh, “Dynamically Controlling Node-level Paral-
lelism in Hadoop,” in Proceedings of the 2015 IEEE 8th International
Conference on Cloud Computing, ser. CLOUD ’15. IEEE Computer
Society, 2015, pp. 309–316.

[14] Z. Jia, C. Xue, G. Chen, J. Zhan, L. Zhang, Y. Lin, and P. Hofstee,
“Auto-tuning Spark Big Data Workloads on POWER8: Prediction-based
Dynamic SMT Threading,” in Proceedings of the 2016 International
Conference on Parallel Architectures and Compilation, ser. PACT ’16.
ACM, 2016, pp. 387–400.

[15] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench Bench-
mark Suite: Characterization of the MapReduce-based Data Analysis,” in
Data Engineering Workshops (ICDEW), 2010 IEEE 26th International
Conference on. IEEE, 2010, pp. 41–51.

[16] “Amazone Elastic Compute Cloud,” https://aws.amazon.com/
ec2/.

[17] A. Sodani, “Knights Landing (KNL): 2nd Generation Intel R© Xeon Phi
processor,” in Hot Chips 27 Symposium (HCS), 2015 IEEE. IEEE,
2015, pp. 1–24.

[18] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “Sparkbench: A
comprehensive benchmarking suite for in memory data analytic platform
spark,” in Proceedings of the 12th ACM International Conference on
Computing Frontiers, ser. CF ’15. ACM, 2015, pp. 53:1–53:8.

[19] “Spark Performance Tests,” https://github.com/databricks/
spark-perf/.

[20] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,
Y. Shi, S. Zhang et al., “Bigdatabench: A big data benchmark suite from
internet services,” in High Performance Computer Architecture (HPCA),
2014 IEEE 20th International Symposium on. IEEE, 2014, pp. 488–
499.

[21] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun,
“Making Sense of Performance in Data Analytics Frameworks,” in
Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’15. USENIX Association, 2015,
pp. 293–307.

[22] A. J. Awan, V. Vlassov, M. Brorsson, and E. Ayguade, “Node Architec-
ture Implications for In-memory Data Analytics on Scale-in Clusters,” in
Proceedings of the 3rd IEEE/ACM International Conference on Big Data
Computing, Applications and Technologies, ser. BDCAT ’16. ACM,
2016, pp. 237–246.

[23] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, “Learning Spark:
Lightning-fast Big Data Analysis.” O’Reilly Media, Inc., 2015.

[24] R. Tous, A. Gounaris, C. Tripiana, J. Torres, S. Girona, E. Ayguadé,
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