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In-memory Big Data Processing (1)

• Embraced by big data analytics frameworks 
− Examples: Apache Spark (MapReduce for iterative algorithms), Ignite (Distributed 

SQL), SAP HANA (In-memory DB), etc.

• Benefits of eliminating expensive I/Os
− High-throughput batch processing

− Low-latency interactive data analytics

2



Architecture and Code Optimization (ARC) Laboratory @ SNU

In-memory Big Data Processing (2)

• To yield best performance memory usage must be carefully tuned
− Example: Spark heap usage and GC time*

• Two major sources of overhead
− Spills: Serializing and storing heap objects to the local disk 

− Garbage collection (GC): Reclaiming memory occupied by orphaned objects
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JVM heap usage GC time
* [ICA3PP'15] C. Pei, et al., "Improving the Memory Efficiency of In-Memory MapReduce based HPC Systems"
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Executor

Worker node 2

Thread 1Thread 0

Executor

Thread 1Thread 0

Example: Apache Spark Execution Flow

• Job: Created whenever an action is invoked in user program

• Stage: A job is split into multiple stages at every shuffle boundary
• Task: Each stage has a set of tasks, processing different RDD partitions
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Executor memory

Local file system

Two Key Parameters Controlling Memory Usage (1)

• Parameter #1: Task granularity (Npartitions)
− Determines how many data partitions are created from a single RDD

− Npartitions set too low → Causes excessive spills and GCs

− Npartitions set too high → Incurs overhead for scheduling and shuffle operations
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Nthreads = 2
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• Parameter #2: Task concurrency (Nthreads)
− Determines how many threads are allocated to a single executor

− Nthreads set too low → Yields suboptimal performance due to underutilization

− Nthreads set too high → Degrades performance due to resource contentions

Npartitions = 4

Executor memory

Nthreads = 2

Local file system

Two Key Parameters Controlling Memory Usage (2)
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Two Key Parameters Controlling Memory Usage (3)

• Spark performance tuning guidelines* 
− Npartitions: “spark.default.parallelism”
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* http://spark.apache.org/docs/latest/index.html

− Nthreads: “spark.executor.cores”

In general, we recommend 2-3 tasks per CPU core in your cluster

All the available cores on the worker in standalone modes
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• Npartitions and Nthreads must be jointly optimized
− Exhaustive search - finding the optimal Npartitions and Nthreads

• TeraSort: Up to 3.64x ( <Npartitions, Nthreads> = <4096, 6> )

• Bayesian Classification: Up to 1.28x ( <Npartitions, Nthreads> = <64, 8> )
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Our Proposal: Workload-Aware Scheduler and Partitioner (WASP)

• WASP: Runtime scheduler jointly optimizing Npartitions and Nthreads

− Goal: Maximizing concurrency without causing excessive spills and GCs

− Consists of two components

• Component #1: Analytical model
− Analyzes DAG and predicts optimal parameters for all stages at program launch

• Component #2: Runtime scheduler
− Fine-tunes Nthreads using hill climbing algorithm at runtime

• WASP achieves near-optimal performance for both shuffle-heavy and 

shufflie-light workloads.  
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Outline

• Motivation and Key Idea

• Workload-Aware Scheduler and Partitioner (WASP)

• Evaluation
− Methodology

− Performance results

• Summary
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RDD
graph

WASP: Overview

• Component #1: Analytical model
− First Pass: Predicting initial Npartitions and Nthreads
− Second Pass: Searching Npartitions and Nthreads via gradient search

• Component #2: Runtime scheduler
− GC-aware optimization of Nthreads
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Component #1: Analytical Model (1st Pass) – Npartitions and Nthreads
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Example value
Execution	
memory 8GB

Nthreads(init) 12 physical cores*

Size of RDD
(RDDsize)

Npartitions(init)

𝑁!"#$%&'())(+,+!) = max
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑚𝑒𝑚𝑜𝑟𝑦

𝑅𝐷𝐷𝑠𝑖𝑧𝑒)
𝑁-%#!+!+.,'())(+,+!)

, 1

𝑅𝐷𝐷𝑠𝑖𝑧𝑒!

Partition 0

Partition 1

Partition n-1
….

Missing parameter is 𝑅𝐷𝐷𝑠𝑖𝑧𝑒!

𝑹𝑫𝑫𝒔𝒊𝒛𝒆𝒌
𝑵𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝒔(𝒌)(𝒊𝒏𝒊𝒕)

* [NSDI'15] K. Ousterhout, et al., "Making Sense of Performance in Data Analytics Frameworks"
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Component #1: Analytical Model (1st Pass) – Memory Amplification Factor

• Ratio of output RDD size to the input RDD size
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Component #1: Analytical Model (1st Pass) – RDDsize and Input size
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Example value

Input	size1 800GB
𝑅𝐷𝐷𝑠𝑖𝑧𝑒! = 𝐼𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒! × max

-./.0-
9𝑀𝐴𝐹(𝑓/!)

22GB
(800 * 0.027)

reduceByKey (0.027)

25GB
(22 * 1.161)

zip (1.161)

11GB
(25 * 0.428)

groupByKey (0.428)

Input	size1 : 800GB

Max

Stage 1

zipflatMap

Stage 0

map

map

RDD graph (Job 0)

reduceByKey

groupByKey

= 𝑹𝑫𝑫𝒔𝒊𝒛𝒆𝟏

𝑁1234567(!)(/0/1) = max
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑚𝑒𝑚𝑜𝑟𝑦

𝑅𝐷𝐷𝑠𝑖𝑧𝑒!
𝑁8531/1/907(!)(/0/1)

, 112 = max
8 𝐺𝐵
25 𝐺𝐵

𝑁8531/1/907(:)(/0/1)

, 1

Npartitions(1)(init) = 36
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• Estimating execution time and finding optimal Npartitions and Nthreads

𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒, ∝ 𝑅𝐷𝐷𝑠𝑖𝑧𝑒,×
𝛼,

𝑁-./0123(,)

Component #1: Analytical Model (2nd Pass) – Gradient Search
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𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒, ∝
𝑅𝐷𝐷𝑠𝑖𝑧𝑒,
𝑁41/-5-5673(,)

×𝛼,×
𝑁41/-5-5673(,)
𝑁-./0123(,)

Npartitions

Nthreads

low high

low

high

𝛼, = 𝑚𝑎𝑥

𝑅𝐷𝐷𝑠𝑖𝑧𝑒,
𝑁41/-5-5673(,)

×𝑁-./0123(,)

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑚𝑒𝑚𝑜𝑟𝑦 , 1

Input: <Npartitions(init), Nthreads(init)>

Shortest timeShortest time

Shortest time

Shortest time
(< 10%)

Output: <Npartitions(k), Nthreads(k)>
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Component #2: Runtime Scheduler

• Optimizing Nthreads at runtime using hill climbing algorithm
− Maximize the degree of parallelism without causing excessive spills and GCs 
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Outline

• Motivation and Key Idea

• Workload-Aware Scheduler and Partitioner (WASP)

• Evaluation
− Methodology

− Performance results

• Summary
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Methodology: Evaluation Platforms

18

Native Cluster Intel Knights
Landing (KNL) Amazon EC2

Server Dell R730 x 4 
(+ 1 master) SuperServer 5038k-i m4.xlarge x 64

(+ 1 master)

CPU Intel Xeon CPU E5-2640 v3
8 cores @ 2.60GHz x 2 

Intel Xeon Phi
(Knights Landing) 7210
64 cores @ 1.30GHz

Intel Xeon E5-2676 v4
4 cores @ 2.4GHz

Memory 16GB DDR4 x 8
(128GB in total) 

16GB MCDRAM &
32GB DDR4 x 6 16GB
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Methodology: Compared Designs and Benchmarks

• Comparing WASP to the following four designs
− Baseline: Out-of-the-box Spark following Spark tuning guidelines 

− 2-D Exhaustive Nthreads: Two-dimensional exhaustive search (stage, Nthreads) 

− 2-D Exhaustive Npartitions: Two-dimensional exhaustive search (stage, Npartitions)

− 3-D Optimal: Three-dimensional exhaustive search (stage, Npartitions, Nthreads)

• Intel HiBench workloads with different characteristics
− Shuffle-heavy: TeraSort, PageRank, Sort

− Shuffle-light: WordCount, Bayesian Classification, Kmeans
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Overall Speedups: Performance on Native Cluster

• Geomean speedup: 1.74x

• Maximum speedup: 3.22x for TeraSort
• Compared to 3-D Optimal: falling within 6%
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Overall Speedups: Performance on Knights Landing

• Geomean speedup: 1.56x

• Maximum speedup: 3.18x for TeraSort
• Compared to 3-D Optimal: falling within 12%
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Overall Speedups: Performance on Amazon EC2 Cluster

• Geomean speedup: 1.31x

• Maximum speedup: 1.67x for TeraSort
• Operating cost reduction: 24% on average, 40% at maximum
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Sensitivity on GC Threshold

• Performance over varying GC threshold for GC-aware task scheduler
− 20% is the optimal value balancing task concurrency and GC overhead
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Impact on GC time and CPU Utilization 

• TeraSort: WASP reduces GC pause time by 72%

• Bayes: CPU utilization is improved by 30% over the baseline
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Summary

• Following Spark tuning guideline yields suboptimal performance
− Workload-oblivious, memory usage-oblivious, and coarse-grained

• WASP jointly optimizes task granularity and concurrency
− Analytical model that predicts an optimal setting of Npartitions and Nthreads
− Runtime GC-aware task scheduler to find an optimal Nthreads

• WASP allows a user to focus on program logic instead of tedious tasks 
of parameter tuning
− Geomean speedups: 1.74x for 4-node cluster, 1.56x for KNL, 1.31x for AWS EC2
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EXTRA SLIDES
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Appendix A: 3-D Optimal <Npartitions, Nthreads>
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Benchmarks Optimal Npartitions and Nthreads 

WordCount
3-D Optimal Job 0: (Stage 0: (128, 8), Stage 1: (64, 4)) 

WASP Job 0: (Stage 0: (128, -), Stage 1: (256, -)) 

TeraSort 
3-D Optimal Job 0: (Stage 0: (64, 4)), Job 1: (Stage 1: (128, 4), Stage 2: (4096, 8)) 

WASP Job 0: (Stage 0: (128, -)), Job 1: (Stage 1: (128, -), Stage 2: (4096, -)) 

PageRank 

3-D Optimal
Job 0: (Stage 0: (256, 4), Stage 1: (512, 8), Stage 2: (512, 8),

Stage 3: (256, 8), Stage 4: (256, 8), Stage 5: (64, 4)) 

WASP
Job 0: (Stage 0: (128, -), Stage 1: (512, -), Stage 2: (512, -),

Stage 3: (256, -), Stage 4: (256, -), Stage 5: (64, -)) 

Sort
3-D Optimal Job 0: (Stage 0: (128, 8), Stage 1: (2048, 4))

WASP Job 0: (Stage 0: (128, -), Stage 1: (2048, -))
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Appendix B: Spill-Aware  vs. GC-Aware Scheduler

• A spill-aware scheduler yields suboptimal performance due to too 

conservative setting of Nthreads.
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Appendix C: Input Sensitivity of WASP

• WASP adjusts Npartitions and Nthreads using the GC-aware scheduler to 

achieve robust performance over all input sizes
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Appendix D: Memory Amplification Factor
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Appendix E: Relation Between Spill and GC

• Breakdown about relation between spill and GC
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In-memory Big Data Processing (1)

• Recently embraced by big data analytics frameworks
− Apache Spark: Large-scale computation with in-memory caching

− Apache Tez: Complex DAG for processing data built atop Apache YARN

− Apache Ignite: Distributed database with SQL

• Benefits
− Real-time computation with high throughput

− Interactive analytics with low latency
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