
Architecture and Code Optimization (ARC) Laboratory @ SNU

Jointly Optimizing Task Granularity and Concurrency
for In-Memory MapReduce Frameworks

Jonghyun Bae*§ Hakbeom Jang†§ Wenjing Jin* Jun Heo* Jaeyoung Jang†

Joo-Young Hwang‡ Sangyeun Cho‡ Jae W. Lee*

*Seoul National University

§Equal contributions

†Sungkyunkwan University ‡Samsung Electronics Co.

Big Data 2017, Boston, MA, USADecember 12th, 2017

Architecture and Code Optimization (ARC) Laboratory @ SNU

In-memory Big Data Processing (1)

• Embraced by big data analytics frameworks
− Examples: Apache Spark (MapReduce for iterative algorithms), Ignite (Distributed

SQL), SAP HANA (In-memory DB), etc.

• Benefits of eliminating expensive I/Os
− High-throughput batch processing

− Low-latency interactive data analytics

2

Architecture and Code Optimization (ARC) Laboratory @ SNU

In-memory Big Data Processing (2)

• To yield best performance memory usage must be carefully tuned
− Example: Spark heap usage and GC time*

• Two major sources of overhead
− Spills: Serializing and storing heap objects to the local disk

− Garbage collection (GC): Reclaiming memory occupied by orphaned objects

3

JVM heap usage GC time
* [ICA3PP'15] C. Pei, et al., "Improving the Memory Efficiency of In-Memory MapReduce based HPC Systems"

Architecture and Code Optimization (ARC) Laboratory @ SNU

Executor

Worker node 2

Thread 1Thread 0

Executor

Thread 1Thread 0

Example: Apache Spark Execution Flow

• Job: Created whenever an action is invoked in user program

• Stage: A job is split into multiple stages at every shuffle boundary
• Task: Each stage has a set of tasks, processing different RDD partitions

4

Stage 1

Stage 2

Task granularity Task concurrency

RDD 1

RDD 0

RDD 2

map()

sortByKey()

(hdfs://.../input.txt)

RDD graph

Job 0

DAG scheduler

Job 0

Shuffle

Task Task Task Task

Task Task Task Task

Task Task Task Task

Worker node 1

Architecture and Code Optimization (ARC) Laboratory @ SNU

Executor memory

Local file system

Two Key Parameters Controlling Memory Usage (1)

• Parameter #1: Task granularity (Npartitions)
− Determines how many data partitions are created from a single RDD

− Npartitions set too low → Causes excessive spills and GCs

− Npartitions set too high → Incurs overhead for scheduling and shuffle operations

5

Npartitions = 2

Nthreads = 2

Npartitions = n

Executor memory

Nthreads = 2

. . .

Local file system

. . .

Architecture and Code Optimization (ARC) Laboratory @ SNU

• Parameter #2: Task concurrency (Nthreads)
− Determines how many threads are allocated to a single executor

− Nthreads set too low → Yields suboptimal performance due to underutilization

− Nthreads set too high → Degrades performance due to resource contentions

Npartitions = 4

Executor memory

Nthreads = 2

Local file system

Two Key Parameters Controlling Memory Usage (2)

6

Npartitions = 4

Executor memory

Nthreads = 4

Local file system

Architecture and Code Optimization (ARC) Laboratory @ SNU

Two Key Parameters Controlling Memory Usage (3)

• Spark performance tuning guidelines*
− Npartitions: “spark.default.parallelism”

7

* http://spark.apache.org/docs/latest/index.html

− Nthreads: “spark.executor.cores”

In general, we recommend 2-3 tasks per CPU core in your cluster

All the available cores on the worker in standalone modes

Architecture and Code Optimization (ARC) Laboratory @ SNU

• Npartitions and Nthreads must be jointly optimized
− Exhaustive search - finding the optimal Npartitions and Nthreads

• TeraSort: Up to 3.64x (<Npartitions, Nthreads> = <4096, 6>)

• Bayesian Classification: Up to 1.28x (<Npartitions, Nthreads> = <64, 8>)

To
ta
lN
um
be
r
of
Th
re
ad
s

Total Number of Partitions

0.31 0.28 1.27 1.54 1.55 1.59 1.55 1.47

0.50 0.68 0.67 2.04 2.39 2.58 2.58 2.47

0.58 0.70 0.95 1.90 2.46 2.80 2.86 2.81

0.84 1.00 1.16 1.23 2.76 3.35 3.41 3.33

0.43 - - - 1.63 2.01 2.84 2.76

0.42 - 1.13 1.75 2.72 3.48 3.64 3.49

0.66 1.08 1.29 1.85 2.33 3.15 3.30 3.19

0.56 1.41 1.41 1.64 1.71 2.92 3.26 3.16

2.58 2.58 2.47

2.46 2.80 2.86 2.81

2.76 3.35 3.41 3.33

2.84 2.76

2.72 3.48 3.64 3.49

3.15 3.30 3.19

2.92 3.26 3.16

16

32

48

64

80

96

112

128

64 128 256 512 1024 2048 4096 8192
0

0.5

1

1.5

2

2.5

3

3.5

N
or
m
al
iz
ed
S
pe
ed
up

(a) TeraSort (shuffle-heavy)
Total number of partitions (Npartitions)

N
th
re
ad
s

x
nu

m
be

r o
f e

xe
cu

to
rs

N
or

m
al

iz
ed

 s
pe

ed
up

(b) Bayes (shuffle-light)
To
ta
lN
um
be
r
of
Th
re
ad
s

Total Number of Partitions

0.37 0.38 0.37 0.37 0.37 0.35

0.62 0.63 0.63 0.63 0.62 0.55

0.84 0.87 0.85 0.84 0.84 0.84

1.01 1.00 0.99 1.02 1.02 1.00

1.09 1.09 1.07 1.07 1.09 1.09

1.20 1.17 1.16 1.20 1.15 1.16

1.28 1.22 1.18 1.18 1.20 1.23

1.28 1.22 1.26 1.23 1.28 1.18

1.20 1.17 1.16 1.20 1.15 1.16

1.28 1.22 1.18 1.18 1.20 1.23

1.28 1.22 1.26 1.23 1.28 1.18

16

32

48

64

80

96

112

128

64 128 256 512 1024 2048
0

0.2

0.4

0.6

0.8

1

1.2

N
or
m
al
iz
ed
S
pe
ed
up

N
or

m
al

iz
ed

 s
pe

ed
up

N
th
re
ad
s

x
nu

m
be

r o
f e

xe
cu

to
rs

Total number of partitions (Npartitions)

0

100

200

300

128 256 512 1024 2048 4096

Compute Spill Write

Spill No spill
Se

co
nd

s
/ G

B
(L

ow
er

 is
 b

et
te

r)

Npartitions

13%

81%

6%

Spill to Disk

Full GC

Young GC

Two Key Parameters Controlling Memory Usage (4)

8

Architecture and Code Optimization (ARC) Laboratory @ SNU

Our Proposal: Workload-Aware Scheduler and Partitioner (WASP)

• WASP: Runtime scheduler jointly optimizing Npartitions and Nthreads

− Goal: Maximizing concurrency without causing excessive spills and GCs

− Consists of two components

• Component #1: Analytical model
− Analyzes DAG and predicts optimal parameters for all stages at program launch

• Component #2: Runtime scheduler
− Fine-tunes Nthreads using hill climbing algorithm at runtime

• WASP achieves near-optimal performance for both shuffle-heavy and

shufflie-light workloads.

9

Architecture and Code Optimization (ARC) Laboratory @ SNU

Outline

• Motivation and Key Idea

• Workload-Aware Scheduler and Partitioner (WASP)

• Evaluation
− Methodology

− Performance results

• Summary

10

Architecture and Code Optimization (ARC) Laboratory @ SNU

RDD
graph

WASP: Overview

• Component #1: Analytical model
− First Pass: Predicting initial Npartitions and Nthreads
− Second Pass: Searching Npartitions and Nthreads via gradient search

• Component #2: Runtime scheduler
− GC-aware optimization of Nthreads

11

Master node

Component #2

Annotated RDD graph
Npartitions Nthreads

Stage 1 10 4
Stage 2 14 5
… … …

Task Decision
(New Nthreads)

RDD
graph

DAG scheduler

Task metrics

Exec.time

GC time

Task metrics

Exec.time

GC time

Worker node

launchTask()Coarse-grained
task scheduler

feedback

1st
Pass

2nd
Pass

Component #1

Architecture and Code Optimization (ARC) Laboratory @ SNU

Component #1: Analytical Model (1st Pass) – Npartitions and Nthreads

12

Example value
Execution	
memory 8GB

Nthreads(init) 12 physical cores*

Size of RDD
(RDDsize)

Npartitions(init)

𝑁!"#$%&'())(+,+!) = max
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑚𝑒𝑚𝑜𝑟𝑦

𝑅𝐷𝐷𝑠𝑖𝑧𝑒)
𝑁-%#!+!+.,'())(+,+!)

, 1

𝑅𝐷𝐷𝑠𝑖𝑧𝑒!

Partition 0

Partition 1

Partition n-1
….

Missing parameter is 𝑅𝐷𝐷𝑠𝑖𝑧𝑒!

𝑹𝑫𝑫𝒔𝒊𝒛𝒆𝒌
𝑵𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝒔(𝒌)(𝒊𝒏𝒊𝒕)

* [NSDI'15] K. Ousterhout, et al., "Making Sense of Performance in Data Analytics Frameworks"

Architecture and Code Optimization (ARC) Laboratory @ SNU

Component #1: Analytical Model (1st Pass) – Memory Amplification Factor

• Ratio of output RDD size to the input RDD size

13

●

●●
●
●
●
●
●

●
●

●
●

●
●
●
●
●

●

●

●●
●●

●●
●
●
●
●
●
●

●
●
●
●●

●●
●

●●●●●●●●●●●
●

●

●

●

●

●

●

●

0

1

2

3

4

0 1 2 3 4

zipzip (1.161)

●
●

●
●

●
●
●

●
●
●
●

●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●
●
●
●
●

●

●

●

●

●●●●●
●●
●●
●

●
●
●
●
●

●

●

●

●

●

●
●
●
●
●
●
●
●

●
●

●
●
●

●

●

●
●
●

●

●

0

1

2

3

0 1 2 3

mapValuesmapValue (1.067)

●
●

●

●
●●
●
●
●●

●
●●

●

● ●●
●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●
●
●
●
●
●

●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●
●

●●●

●
●

●

●●●

●●●

●

0

1

2

3

0 1 2 3

sortByKeysortByKey (1.0)

●●
●●
●●

●●
●

●
●

● ●
●

●
●

●

● ●

●●
●
●
●
●

●
●

●
●●

●

●●

●●

●
●

●
●

●●●
●●

●
●
●
●
●

●
●
●
●
●
●
●
●

●
●

●
●
●

●
●

●●
●

●

●

0

1

2

3

0 1 2 3

joinjoin (0.853)

●●
● ●

●
● ●●●

●
● ● ●●

●
● ●

●
●

●●
●●●

●●
●●

●●●
● ●

●
●●

●
●

●

●●●●● ● ● ● ●●●●●
●●

●●
●

●
●

●
●

●
●

●
●

●
●

●

0

1

2

3

0 1 2 3

groupByKeygroupByKey (0.428)

●●●●●●●● ●●●●●
● ● ●

● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●
● ● ●

●●●●
●●●● ●

● ● ●
●●

●

0

1

2

3

0 1 2 3

filterfilter (0.187)

Input size (GB)

O
ut

pu
t s

iz
e

(G
B)

Input size (GB)
O

ut
pu

t s
iz

e
(G

B)
Input size (GB)

O
ut

pu
t s

iz
e

(G
B)

Input size (GB)

O
ut

pu
t s

iz
e

(G
B)

Input size (GB)

O
ut

pu
t s

iz
e

(G
B)

O
ut

pu
t s

iz
e

(G
B)

Input size (GB)

Architecture and Code Optimization (ARC) Laboratory @ SNU

Component #1: Analytical Model (1st Pass) – RDDsize and Input size

14

Example value

Input	size1 800GB
𝑅𝐷𝐷𝑠𝑖𝑧𝑒! = 𝐼𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒! × max

-./.0-
9𝑀𝐴𝐹(𝑓/!)

22GB
(800 * 0.027)

reduceByKey (0.027)

25GB
(22 * 1.161)

zip (1.161)

11GB
(25 * 0.428)

groupByKey (0.428)

Input	size1 : 800GB

Max

Stage 1

zipflatMap

Stage 0

map

map

RDD graph (Job 0)

reduceByKey

groupByKey

= 𝑹𝑫𝑫𝒔𝒊𝒛𝒆𝟏

𝑁1234567(!)(/0/1) = max
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑚𝑒𝑚𝑜𝑟𝑦

𝑅𝐷𝐷𝑠𝑖𝑧𝑒!
𝑁8531/1/907(!)(/0/1)

, 112 = max
8 𝐺𝐵
25 𝐺𝐵

𝑁8531/1/907(:)(/0/1)

, 1

Npartitions(1)(init) = 36

Architecture and Code Optimization (ARC) Laboratory @ SNU

• Estimating execution time and finding optimal Npartitions and Nthreads

𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒, ∝ 𝑅𝐷𝐷𝑠𝑖𝑧𝑒,×
𝛼,

𝑁-./0123(,)

Component #1: Analytical Model (2nd Pass) – Gradient Search

15

𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒, ∝
𝑅𝐷𝐷𝑠𝑖𝑧𝑒,
𝑁41/-5-5673(,)

×𝛼,×
𝑁41/-5-5673(,)
𝑁-./0123(,)

Npartitions

Nthreads

low high

low

high

𝛼, = 𝑚𝑎𝑥

𝑅𝐷𝐷𝑠𝑖𝑧𝑒,
𝑁41/-5-5673(,)

×𝑁-./0123(,)

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑚𝑒𝑚𝑜𝑟𝑦 , 1

Input: <Npartitions(init), Nthreads(init)>

Shortest timeShortest time

Shortest time

Shortest time
(< 10%)

Output: <Npartitions(k), Nthreads(k)>

Architecture and Code Optimization (ARC) Laboratory @ SNU

Component #2: Runtime Scheduler

• Optimizing Nthreads at runtime using hill climbing algorithm
− Maximize the degree of parallelism without causing excessive spills and GCs

Stage 2 Time

T0

T1

T2

T3

T4

T6

T5

T7

T8

T9

Stage 1

N
th
re
ad
s(
1)

=
4

Increased
(Nthreads = 6)

T0

T1

T2

T3

T4

Npartitions(2) = 14
Nthreads(2) = 5

T8

T10

T5

T7

T9

T6

T11

N
th
re
ad
s(
2)

=
5

17

T12

GC-aware
task scheduler

Update
freeCores

GC time &
execution time

Annotated RDD graph

Npartitions(1) = 10
Nthreads(1) = 4

Tn : Task n

…

Npartitions(k) Nthreads(k)
Stage 1 10 4
Stage 2 14 5
… … …

T13

Architecture and Code Optimization (ARC) Laboratory @ SNU

Outline

• Motivation and Key Idea

• Workload-Aware Scheduler and Partitioner (WASP)

• Evaluation
− Methodology

− Performance results

• Summary

17

Architecture and Code Optimization (ARC) Laboratory @ SNU

Methodology: Evaluation Platforms

18

Native Cluster Intel Knights
Landing (KNL) Amazon EC2

Server Dell R730 x 4
(+ 1 master) SuperServer 5038k-i m4.xlarge x 64

(+ 1 master)

CPU Intel Xeon CPU E5-2640 v3
8 cores @ 2.60GHz x 2

Intel Xeon Phi
(Knights Landing) 7210
64 cores @ 1.30GHz

Intel Xeon E5-2676 v4
4 cores @ 2.4GHz

Memory 16GB DDR4 x 8
(128GB in total)

16GB MCDRAM &
32GB DDR4 x 6 16GB

Architecture and Code Optimization (ARC) Laboratory @ SNU

Methodology: Compared Designs and Benchmarks

• Comparing WASP to the following four designs
− Baseline: Out-of-the-box Spark following Spark tuning guidelines

− 2-D Exhaustive Nthreads: Two-dimensional exhaustive search (stage, Nthreads)

− 2-D Exhaustive Npartitions: Two-dimensional exhaustive search (stage, Npartitions)

− 3-D Optimal: Three-dimensional exhaustive search (stage, Npartitions, Nthreads)

• Intel HiBench workloads with different characteristics
− Shuffle-heavy: TeraSort, PageRank, Sort

− Shuffle-light: WordCount, Bayesian Classification, Kmeans

19

Architecture and Code Optimization (ARC) Laboratory @ SNU

Overall Speedups: Performance on Native Cluster

• Geomean speedup: 1.74x

• Maximum speedup: 3.22x for TeraSort
• Compared to 3-D Optimal: falling within 6%

20

0

1

2

3

4

5

TeraSort PageRank Sort WordCount Bayes Kmeans Geomean
Shuffle-heavy Shuffle-light

N
or

m
al

iz
ed

 s
pe

ed
up

2-D Exhaustive Nthreads 2-D Exhaustive NpartitionsBaseline WASP 3-D Optimal

Architecture and Code Optimization (ARC) Laboratory @ SNU

Overall Speedups: Performance on Knights Landing

• Geomean speedup: 1.56x

• Maximum speedup: 3.18x for TeraSort
• Compared to 3-D Optimal: falling within 12%

21

0

1

2

3

4

5

TeraSort PageRank Sort WordCount Bayes Kmeans Geomean
Shuffle-heavy Shuffle-light

N
or

m
al

iz
ed

 s
pe

ed
up

2-D Exhaustive Nthreads 2-D Exhaustive NpartitionsBaseline WASP 3-D Optimal

Architecture and Code Optimization (ARC) Laboratory @ SNU

Overall Speedups: Performance on Amazon EC2 Cluster

• Geomean speedup: 1.31x

• Maximum speedup: 1.67x for TeraSort
• Operating cost reduction: 24% on average, 40% at maximum

22

N
or

m
al

iz
ed

 s
pe

ed
up

an
d

co
st

 (t
im

es
)

0

0.5

1

1.5

2

TeraSort PageRank Sort WordCount Bayes Kmeans Geomean

Speedup Operating cost

Architecture and Code Optimization (ARC) Laboratory @ SNU

Sensitivity on GC Threshold

• Performance over varying GC threshold for GC-aware task scheduler
− 20% is the optimal value balancing task concurrency and GC overhead

23

0

1

2

3

4

10 20 30 40 50

TeraSort PageRank Sort Average

N
or

m
al

iz
ed

 s
pe

ed
up

GC threshold (%)

Architecture and Code Optimization (ARC) Laboratory @ SNU

Impact on GC time and CPU Utilization

• TeraSort: WASP reduces GC pause time by 72%

• Bayes: CPU utilization is improved by 30% over the baseline

24

0

5

10
15

20

0
20
40
60
80

100

0 2 4 6 8 10 12 14 16 18 20 22

CPU utilization (sum of four executors) GC time (average of four executors)

C
PU

 u
til

iz
at

io
n

(%
)

0

5

10

15

20

0
20
40
60
80

100

0 2 4 6 8 10 12 14 16

G
C

 ti
m

e
(s

)

0
5
10
15
20

0
20
40
60
80

100

0 2 4 6 8 10 12 14 16 18 20 22
0
5
10
15
20

0
20
40
60
80

100

0 2 4 6 8 10 12 14 16C
PU

 u
til

iz
at

io
n

(%
)

G
C

 ti
m

e
(s

)

Time (min) Time (min)

(a) TeraSort - baseline

(b) TeraSort - WASP

(c) Bayes - baseline

(d) Bayes - WASP

Architecture and Code Optimization (ARC) Laboratory @ SNU

Summary

• Following Spark tuning guideline yields suboptimal performance
− Workload-oblivious, memory usage-oblivious, and coarse-grained

• WASP jointly optimizes task granularity and concurrency
− Analytical model that predicts an optimal setting of Npartitions and Nthreads
− Runtime GC-aware task scheduler to find an optimal Nthreads

• WASP allows a user to focus on program logic instead of tedious tasks
of parameter tuning
− Geomean speedups: 1.74x for 4-node cluster, 1.56x for KNL, 1.31x for AWS EC2

25

Architecture and Code Optimization (ARC) Laboratory @ SNU 26

EXTRA SLIDES

Architecture and Code Optimization (ARC) Laboratory @ SNU

Appendix A: 3-D Optimal <Npartitions, Nthreads>

27

Benchmarks Optimal Npartitions and Nthreads

WordCount
3-D Optimal Job 0: (Stage 0: (128, 8), Stage 1: (64, 4))

WASP Job 0: (Stage 0: (128, -), Stage 1: (256, -))

TeraSort
3-D Optimal Job 0: (Stage 0: (64, 4)), Job 1: (Stage 1: (128, 4), Stage 2: (4096, 8))

WASP Job 0: (Stage 0: (128, -)), Job 1: (Stage 1: (128, -), Stage 2: (4096, -))

PageRank

3-D Optimal
Job 0: (Stage 0: (256, 4), Stage 1: (512, 8), Stage 2: (512, 8),

Stage 3: (256, 8), Stage 4: (256, 8), Stage 5: (64, 4))

WASP
Job 0: (Stage 0: (128, -), Stage 1: (512, -), Stage 2: (512, -),

Stage 3: (256, -), Stage 4: (256, -), Stage 5: (64, -))

Sort
3-D Optimal Job 0: (Stage 0: (128, 8), Stage 1: (2048, 4))

WASP Job 0: (Stage 0: (128, -), Stage 1: (2048, -))

Architecture and Code Optimization (ARC) Laboratory @ SNU

Appendix B: Spill-Aware vs. GC-Aware Scheduler

• A spill-aware scheduler yields suboptimal performance due to too

conservative setting of Nthreads.

28

N
or

m
al

iz
ed

sp
ee

du
p

0

1

2

3

4

TeraSort PageRank Sort Geomean

Baseline Spill-aware GC-aware (WASP)

Architecture and Code Optimization (ARC) Laboratory @ SNU

Appendix C: Input Sensitivity of WASP

• WASP adjusts Npartitions and Nthreads using the GC-aware scheduler to

achieve robust performance over all input sizes

29

0

10

20

30

40

16 32 64 128 256

Ex
ec

ut
io

n
tim

e
(m

in
)

Input size (GB)

Baseline WASP

Mem. spill

Architecture and Code Optimization (ARC) Laboratory @ SNU

Appendix D: Memory Amplification Factor

30

●●
●

●

●

●

●

●
●
●
●
●
●

●
●
●
●
●
●
●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

1

2

3

0 1 2 3

flatMap

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●●

●

●

●
● ●

●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0

1

2

3

0 1 2 3

map

●

●●
●
●
●
●
●

●
●

●
●

●
●
●
●
●

●

●

●●
●●

●●
●
●
●
●
●
●

●
●
●
●●

●●
●

●●●●●●●●●●●
●

●

●

●

●

●

●

●

0

1

2

3

4

0 1 2 3 4

zip

●
●

●
●

●
●
●

●
●
●
●

●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●
●
●
●
●

●

●

●

●

●●●●●
●●
●●
●

●
●
●
●
●

●

●

●

●

●

●
●
●
●
●
●
●
●

●
●

●
●
●

●

●

●
●
●

●

●

0

1

2

3

0 1 2 3

mapValues

●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●

●
●
●

●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0

1

2

3

0 1 2 3

randomSplit

●
●

●

●
●●
●
●
●●

●
●●

●

● ●●
●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●
●
●
●
●
●

●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●
●

●●●

●
●

●

●●●

●●●

●

0

1

2

3

0 1 2 3

sortByKey

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●
●
●
●
●
●
●
●

●
●

●

●

●

●

●

●
●

●

●

0

1

2

3

0 1 2 3

distinct

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

0.00

0.01

0.02

0.03

0.00 0.01 0.02 0.03

zipWithIndex

●●
●●
●●

●●
●

●
●

● ●
●

●
●

●

● ●

●●
●
●
●
●

●
●

●
●●

●

●●

●●

●
●

●
●

●●●
●●

●
●
●
●
●

●
●
●
●
●
●
●
●

●
●

●
●
●

●
●

●●
●

●

●

0

1

2

3

0 1 2 3

join

●●
● ●

●
● ●●●

●
● ● ●●

●
● ●

●
●

●●
●●●

●●
●●

●●●
● ●

●
●●

●
●

●

●●●●● ● ● ● ●●●●●
●●

●●
●

●
●

●
●

●
●

●
●

●
●

●

0

1

2

3

0 1 2 3

groupByKey

●●●●●●●● ●●●●●
● ● ●

● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●
● ● ●

●●●●
●●●● ●

● ● ●
●●

●

0

1

2

3

0 1 2 3

filter

●●●●●●●●●●●●●●●● ● ● ●
●●●●● ● ●●●●●●●●

●●●●● ●

0

1

2

3

0 1 2 3

combineByKey

● ●●●● ● ●●● ●●●●●●●●●●●●
● ● ●●●

●

●●●●

●

● ●

●

●●●

●

●●●●●●●●●●●● ● ● ● ● ● ● ●0

1

2

3

0 1 2 3

mapPartitions

●●●●●●●●●●●●●● ●● ● ●●●● ●●● ● ● ● ● ● ● ● ●●●●
●●●●● ● ● ● ●●●●●●● ● ● ●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ●0

1

2

3

0 1 2 3

reduceByKey

● ● ●●● ● ●● ● ● ● ● ● ● ●●●● ●● ●●●●● ●●● ● ● ● ● ●●● ● ● ●●●●●●●●●●●●● ● ● ● ● ● ●0

1

2

3

0 1 2 3

mapPartitionsWithIndex

flatMap (2.038) (1.067)

Input	size	(GB)

Ou
tp
ut
	si
ze
	(G

B)

●●●●●●●●●● ● ● ● ● ● ● ● ● ●

0

1

2

3

0 1 2 3

takeSample

map (1.420) zip (1.161) mapValue (1.067)

randomSplit (1.003) sortByKey (1.0) distinct (0.977) zipWithIndex (0.973)

join (0.853) groupByKey (0.428) filter (0.187) combineByKey (0.096)

takeSample (0.065) mapPartitions (0.056) reduceByKey (0.027) mapPartWIdx (0.002)

Architecture and Code Optimization (ARC) Laboratory @ SNU

Appendix E: Relation Between Spill and GC

• Breakdown about relation between spill and GC

31

Spark Memory

Key-value buffer

Eden

JVM heap layout

Storage

Survivor
Tenured

Old Generation

…K,V K,VK,V K,V K,V

Shuffle data

Key 1 Value 1

Key 2 Value 2

… …

Key N Value N

Apache Spark

Young Generation

…K,V K,VK,V K,V K,V

Spill

K,V … K,V

Batch

Key-value buffer(1) Spill in-memory
object to disk

(2) KV buffer is not freed until the spill is finished

Batch when reading/writing from
serializers

K,V … K,V

Batch

…

Architecture and Code Optimization (ARC) Laboratory @ SNU

In-memory Big Data Processing (1)

• Recently embraced by big data analytics frameworks
− Apache Spark: Large-scale computation with in-memory caching

− Apache Tez: Complex DAG for processing data built atop Apache YARN

− Apache Ignite: Distributed database with SQL

• Benefits
− Real-time computation with high throughput

− Interactive analytics with low latency

32

