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A Appendix

Table 1. Comparison of L3 to PNG and JPEG

Algorithm
Lossless? GPU-support?

Filter Compression

PNG
Five types
(None, Sub,

Up, Avg, Paeth)
Deflate ⃝ ×

JPEG
DCT,

Quantization
Run-length +
Huffman coding

× △

L3
Custom
Paeth

Base-delta
coding

⃝ ⃝

A.1 Comparison of L3 design to PNG and JPEG design

Table 1 summarizes the design of PNG, JPEG, and L3 based on their filtering
and compression schemes. PNG represents the most popular lossless image for-
mat, which is the least GPU-friendly. The PNG encoder selects the best of the
five data filters for a scanline (None, Sub, Up, Average, Paeth) and applies it to
both the current and the next scanlines. The compression stage employs the De-
flate algorithm, which is inherently sequential, hence making it very challenging
to execute efficiently on data-parallel accelerators like GPU.

JPEG provides high decoding throughput but with loss of information. The
JPEG encoder filters the pixels of the same color to the top-left corner in a
macroblock by discrete cosine transformation (DCT), followed by data quan-
tization. This method drops color areas that are not sensitive to human eyes,
which causes information loss. Both run-length coding and Huffman coding are
utilized to compress pixels. While some of those operations (e.g., DCT, quan-
tization) can be offloaded to GPU, others still need to run on the CPU or a
custom accelerator which is not widely available on commodity GPUs.
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Table 2. DALI data loader configurations

Function Argument Value

Pipeline

num threads 12
exec pipelined True

prefetch queue depth 2
exec async True

fn.readers.file
prefetch queue depth 2

random shuffle True

fn.decoders.image

device memory padding

256MB each
host memory padding

device memory padding jpeg2k

host memory padding jpeg2k

preallocate height hint Same as the
resolution of datasetpreallocate width hint
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Fig. 1. Lossless image data preparation throughput using prior works on GPU-
implemented lossless data compression

L3 provides high throughput and high metric performance (with no loss of
information) on commodity data-parallel accelerators, thus delivering high end-
to-end throughput close to the ideal even if there is no format-specific custom
hardware. This work will also raise the bar on hardware seekers for lossless image
formats by serving as a solid baseline to prevent them from seeking custom
hardware support prematurely.

A.2 Detailed Experimental Setting

We implement a data loader using the NVIDIA DALI library, and all image
formats, including L3, are loaded and decoded through the DALI data loader.
Table 2 summarizes the configuration of the DALI data loader.

A.3 Throughput Comparison with Other Lossless Formats for GPU

Figure 1 reports the data preparation throughput of prior lossless data com-
pression methods covered in the related work section. In fact, we have evalu-
ated all of the following open-source GPU implementations: (1) CULZSS [2],
(2) CUDPP [3], and (3) CUHD [4]. However, we eventually reported the results
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Fig. 2. Load and Decode execution time breakdown

Table 3. Detailed descriptions about models, datasets, and mini-batch sizes for FP32
on V100, and mixed precision on A100

Dataset (Resolution)
# of train/val/test

Model (Backbone)
Batch size

FP32 on
V100

Mixed on
A100

Cityscapes (1920×1080)
2975/500/1525

DDRNet23-slim 16 64
DeepLabv3+ (MobileNetv2) 20 96
MaskFormer (ResNet50) 16 64

PointRend (SemanticFPN) 12 64

KITTI (1024×720)
3519/3462/500

EgoNet 12 48
PointPillars 16 80
YOLOv5 64 256

from LZ4 on GPU only (nvcomp [1] implementation from NVIDIA) as they all
perform worse than LZ4.

A.4 Separating Load/Decode Performance

Figure 2 shows an execution time breakdown of data preparation for three image
resolutions. Note that the Load and Decode are fully pipelined. Thus, the longer
of the two determines the data preparation throughput. Both PNG and L3 have
comparable Load time due to similar compression ratios, whereas the decoding
time is significantly lower in L3.

A.5 Performance Comparison on Low-End GPUs

L3 also achieves performance improvement on other low-end GPUs. The TOPS
requirement of L3 for data preparation is relatively small compared to the com-
pute capabilities of mainstream GPUs. For example, L3 requires up to 1.15
TOPS for FHD datasets, which is less than 10% of the peak TOPS of NVIDIA
Turing-based RTX 2080 Ti (13.4 TOPS) and Pascal-based GTX Titan Xp (12.1
TOPS).

Table 3 summarizes the model, dataset, and batch size used for training on
NVIDIA V100 GPU. Figure 3(a) compares the data preparation throughput
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Fig. 3. Throughput Comparison with lossless-encoded datasets on NVIDIA V100 (a)
Data preparation (Load+Decode) throughput (b) Normalized end-to-end training iter-
ation throughput

(Load+Decode) of L3 and other lossless decoding methods with various image
resolutions. For experiments, we use a p3.2xlarge AWS EC2 instance with
NVIDIA V100 GPU with 16GB HBM and Intel Xeon E5-2686 v4 CPU with 8
cores. We utilize the Cityscapes dataset as input. L3 shows throughput gains by
5.0×, 7.3×, and 11.7× on HD, FHD, and UHD-resolution images, respectively,
compared to PNG. L3 achieves higher data preparation throughput than all the
other formats, regardless of image resolution or system.

Figure 3(b) presents the normalized training throughput (iterations/sec) of
different lossless image formats on various object detection and semantic segmen-
tation models. The training throughput is normalized to the ideal case where
the system has zero overhead for data preparation (Load+Decode). Overall, L3
achieves the best end-to-end training throughput by hitting an average of 1.70×
speedup over PNG.

A.6 Mixed-Precision DNN Training Throughput

Mixed-precision training is becoming popular to improve the training throughput
at a negligible loss of test set accuracy compared to full-precision floating-point
training. To support this, NVIDIA GPUs have specialized computation units
called Tensor Cores for half- and mixed-precision operations. In this setting, the
DNN training pipeline spends even less time on Compute to become more bot-
tlenecked by the data preparation time. Table 3 summarizes the model, dataset,
and batch size used for mixed-precision training on NVIDIA A100 GPU.
Throughput Comparison with Lossless Decoders. Figure 4(a) shows the
normalized mixed-precision training throughput of the seven models on the loss-
less image datasets. As stated above, the efficiency of data preparation in half-
precision training has a greater impact on the end-to-end training throughput
than in full-precision training. As a result, DNN training with the other loss-
less formats yields a much lower throughput than the ideal case (i.e., with no
data preparation time). L3 achieves a 2.26× geomean throughput, which is sig-
nificantly higher than the other lossless image formats because L3 significantly
reduces the decoding time with its GPU-accelerated decoding.
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Fig. 4. Normalized mixed-precision training throughput. (a) Lossless-encoded datasets
(b) Lossy-encoded datasets

Throughput Comparison with Lossy Decoders. Figure 4(b) compares
the mixed-precision DNN training throughput with the WebP (Lossy), JPEG
(Lossy), and the L3 (Lossless)-encoded dataset. We use the same hyperparam-
eters and quality factors of each lossy image format of the main paper except
the batch size. The figure shows that the training throughput of L3 is higher
than that of both JPEG and WebP (Lossy) by a factor of 1.34× and 1.97×,
respectively.

A.7 Performance Improvement by Algorithm and Hardware
Accelerator

Figure 5 shows the data preparation throughput of the PNG- and L3-encoded
datasets on CPU with image-level parallelism (i.e., parallelized across the batch
dimension). The figure reports the average data preparation throughput with
2,048 FHD resolution images from Cityscapes dataset on an AWS EC2 instance
of Intel Xeon Platinum 8275CL CPU with 96 cores. L3 (CPU) processes the
L3 decoder on the CPU without optimization, and L3 (AVX) operates the en-
tire custom Paeth and the add operation of base-delta decoding with advanced
vector extensions (AVX) SIMD instructions for x86 ISA. The performance im-
provement by the lightweight algorithm is represented by the performance dif-
ference between PNG, L3 (CPU), and L3 (AVX). Furthermore, the throughput
improvement by whether the hardware accelerator is used or not is shown by
the comparison on L3 (AVX) and L3 (GPU).
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Fig. 6. Training time and accuracy of L3- and JPEG-encoded datasets. The red-dotted
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Overall, both PNG, L3 (CPU), and L3 (AVX) show a scalable throughput
improvement, L3 (CPU) and L3 (AVX) show performance improvement by a
factor of 2.1×, and 5.4× on 96 cores compared to PNG. L3 (GPU) enables the
GPU to process multiple patches in parallel to exploit the massive parallelism
of GPU, thereby achieving throughput improvement by 5.2× and 2.0× than L3
(CPU) and L3 (AVX), respectively.

A.8 Accuracy Convergence on Lossless/Lossy Image Format

Figure 6 shows the overall model accuracy over time when training with L3- and
JPEG-encoded datasets. The representative models are trained until the loss of
the validation set does not decrease for 10 consecutive epochs. The red-dotted
and gray-dotted vertical lines mark when the training was finished for L3 and
JPEG, respectively.

Overall, the training with lossless L3 results in superior accuracy and shorter
training time than training with lossy JPEG. While training with other lossless
formats (e.g., PNG, WebP) also results in the exact same accuracy and the
number of iterations, their per-iteration throughput is much lower than that of
L3. Thus, their end-to-end training time is much longer than JPEG. In contrast,
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Table 4. Data compression ratio of the origin and custom Paeth filter (The compressed
size / the decompressed size). Lower is better.

Cityscapes KITTI Random Black

Raw (MB) 5.93 2.24 5.93 5.93

Origin 0.42× 0.63× 1.02× 0.12×
Custom 0.44× 0.64× 1.02× 0.12×

L3 demonstrates an advantage over lossy JPEG in terms of both accuracy and
overall training time.

A.9 Accuracy on Various Q-factors of Lossy Image Format

A lower quality factor affects the test-set accuracy. Figure 7 shows the model
accuracy of PointRend and YOLOv5 trained with JPEG (Lossy), WebP (Lossy),
and L3 (Lossless)-encoded datasets with varying quality factors. The accuracy
is evaluated with the test-set. The results show that a high quality factor must
be used to achieve a comparable accuracy of the lossless image format, but this
causes a significant reduction of data preparation throughput.

A.10 Impact of Dependency Patterns in the Paeth Filter

Table 4 shows that the change in the dependency pattern between the original
and custom Paeth filter yields an insignificant difference (2% at the worst) in
compression ratio. In summary, our custom Paeth unlocks ample data parallelism
on GPU without degrading the compression ratio.

A.11 Encoding Performance

Since DNN training features a write-once-read-many (WORM) access pattern,
dataset encoding is just a one-time cost. Thus, optimizing encoder performance
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was not a priority in this work. However, because of the lightweight algorithm,
the L3 encoder still achieves higher encoding throughput than PNG by 9.3%,
12.2%, and 14.1% for HD, FHD, and UHD resolution, respectively.
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