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Neural Processing Units for Clouds

= Hardware resources in Neural Processing Units (NPUs)
« Computing units (TOP/s), On-chip buffers (MB), Off-chip memory bandwidth (GB/s)

= Compute-to-Memory Bandwidth Ratio varies widely among NPUs

« According to target applications (Training or Inference), service scenarios, area budget, etc.
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Characteristics of DNN Models

= Arithmetic Intensity (Ops/Byte):

« How many compute operations are performed per byte loaded from off-chip DRAM

= The metric is determined by:
* Type of Layer: Convolution >> Depth-wise Convolution > Matrix Multiply > Embedding Lookup

» Batch Size: Large batch > Small batch
High Reuse, Relatively

Low Batch Matrix Multiplication, High Batch Convolution, Many Operations with Data
Embedding Lookup, etc. Depth-wise Convolution, etc.
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NPU Resource Underutilization Problem

= NPU Capabilities = DNN Model Characteristics
Compute to Memory _ Throughput (Ops/sec) —~ Arithmetic _ # of total operations (Ops)
Bandwidth Ratio MemoryBandwidth (Bytes/sec) ~ Intensity Total size of data (Bytes)

Should be balanced for high resource utilization
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We need to close this gap between compute-to-memory bandwidth ratio (NPU)
and arithmetic intensity (DNN model) to achieve high utilization.
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NPU Resource Underutilization Problem

= No one-size-fits-all NPUs for various DNN models and batch sizes

« Compute-centric accelerators are well-suited for Vision Tasks

 Memory-centric accelerators prefers NLP & Recommendation Tasks

= Significant mismatch between Arithmetic Intensity and Compute-to-Memory BW ratio
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* Each acronym corresponds to BERT-base (BB), BERT-large (BL), NCF recommendation (NCF), XLNet (XL), InceptionV3 (IC), MobileNetV2 (MN), ResNet50 (RN), ResNeXt50 (RX)
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NPU Resource Underutilization Problem

= This mismatch leads to Resource Underutilization

« Conventional way: Double-Buffering / Decoupled Access-and-Execution (Prefetching)

& Mem-intensive Model DRAM Channel Idle Time
Double-buffering Memory Util.
or Prefetching  compute Util. h . %} -
\ 1 / \ 1 \ 1 L'_’
Compute Idle Time Comp-intensive Model

Imbalance between NPU and DNN models

Mem-intensive Model >

. Comp-intensive Model Time
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NPU Resource Underutilization Problem

= This mismatch leads to Resource Underutilization

* Our Proposal: Layer-wise interleaving for balanced resource utilization

* Challenge: Finding a proper prefetch timing is non-trivial due to limited on-chip buffers
A DRAM Channel Idle Time

Double-buffering Memory Util.
or Prefetching Compute Util. h - % —
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Compute Idle Time

Layer-wise Memory Util. | Large benefits w/ time-multiplexing
Interleaving Compute Util.
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Layerweaver: Maximizing NPU Resource Utilization

r N
Layerweaver efficiently interweaves layer-wise execution of multiple DNNs to maximize

resource utilization and throughput of NPU by utilizing a lightweight scheduler
\ J

= Proposes a lightweight scheduling algorithm that efficiently interleaves multiple DNNs

= Carefully considers on-chip memory size, output forwarding, and starvation

= Does not require special hardware support to be readily applicable to existing NPUs

= Achieves high throughput and nearly-full resource utilization on 16 pairs of DNN models,

various inference scenarios, and NPUs
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Presentation Outline

= Building Efficient DNN Serving System w/ Layerweaver
* Overview of Greedy Scheduler w/ Service Requests
» Calculation of Compute and Memory Idle Time

» Layer Selection Process
= Evaluation

= Conclusions
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Overview of Layerweaver Serving System

Other Workers Host Processor NPU
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Request Streams

= Assuming a frontend load balancer that distributes a mix of both memory- and compute-intensive

requests at pre-determined rates to worker nodes
= Host processor triggers the greedy, layer-wise scheduler when a schedulable batch is formed

= Greedy Scheduler accepts requests and adds them to the (scheduling) candidate group

* Then the scheduler selects the next layer to schedule from this candidate group leading to the
least idle time in compute/memory resources
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Light-weight Scheduling Algorithm of Layerweaver

= Observation: To minimize idle time, keep a proper decoupling distance

= Def. Decoupling distance: Time difference btw. the last fetch completion (T,,) and computation finish (T,)

* Too long decoupling distance: Potential Memory Idle Time

* Too short decoupling distance: Potential Compute Idle Time
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* Dependence graph of input & output activation is omitted
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Light-weight Scheduling Algorithm of Layerweaver

= Calculating Compute Idle Time

* When too short decoupling distance exists, there could be Compute Idle Time

» Before starting computation of B1, the input data of B1 should be prepared

R Mem. Time R Mem. Time
S < >
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Decoupling distance

-
Decoupling distance

Compute Idle Time =0 Compute Idle Time = Mem. Time - Decoupling distance
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Light-weight Scheduling Algorithm of Layerweaver

= Calculating Memory Idle Time

 When too large decoupling distance exists, there could be Memory Idle Time
* Free on-chip buffer size for now = 600 KB = 600 KB / 100 GB/s (Mem. BW) = 6 us

Time to fetch 600 KB (6us)

Compute Al
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Decoupling distance

Memory Ildle Time =0
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Light-weight Scheduling Algorithm of Layerweaver

= Calculating Memory Idle Time

 When too large decoupling distance exists, there could be Memory Idle Time
* Free on-chip buffer size for now = 600 KB = 600 KB / 100 GB/s (Mem. BW) = 6 us

Memory ldle Time = Decoupling distance - 6 us
A | Bl}a“fer size limit is met

Time to fetch 600 KB (6us)
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Light-weight Scheduling Algorithm of Layerweaver

= Calculating Memory Idle Time (Cont’d)
* Some models have Inherent Memory ldle Time, which cannot be removed by scheduling

* To prevent additional memory idle time, keep minimum decoupling distance

Inherent Memory Idle Time Increased Memory Idle Time caused by
A (Scheduling cannot remove this) A B3 and its increased decoupling distance
< d
Miemory M ——— N7 AL
Compute ‘.| Al i B3 ". Al
Time f¥febl3nge Aegapnlingdistance The same amount available for prefetch

available for prefetch
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Light-weight Scheduling Algorithm of Layerweaver

= Layer Selection

» Detailed formal descriptions about every idle time case are available in our paper
« After exactly calculates the idle time of “each layers in progress” from K candidate requests ~ O(k)

« Select the layer that incurs minimum memory and compute idle time, and repeat for N layers ~ O(kN)
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Presentation Outline

= Fvaluation

= Conclusions
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Evaluation Methodology & Inference Scenario

= Evaluation Scenario: Single- / Multi-batch Streams (Extended Single-stream in MLPerf [1])

= Accelerators: Memory-centric (Google TPUv3 style) & Compute-centric (Intel NNP-1 style) NPUs
= Baseline Strategy: Memory-only / Compute-only / Fair / AI-MT [2]
= Metrics: Normalized System Throughput (STP), Time Utilization (%)

Batch size

t;; = Processing time for jth query
of request i streams

Input Timeline for Multi-Batch Streams (# of Streams = 2)

[1] Reddi et al., "MLPerf Inference Benchmark”, ISCA '20
[2] Baek et al., “A Multi-Neural Network Acceleration Architecture”, ISCA '20
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Performance Evaluation (System Throughput)

= Scenario: Single-Batch Streams (# of Streams = 2) on TPUv3-style NPU

= Layerweaver: 60.1% throughput increase over the baseline (Fair)

= Against Al-MT: Layerweaver shows 21.6% higher geomean STP than AI-MT
* Al-MT: State-of-the-art time-multiplexed DNN multi-tasking technique
» Layerweaver estimates the resource idle time more precisely than Al-MT based on a simple heuristic

For various Multi-Batch Streams configurations, Layerweaver outperforms all the other schemes Smaller benefits w/
biased config.
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Overall NPU Resource Utilization

Evaluation Scenario: Single-Batch Streams (# of Streams = 2) w/ TPUv3-style NPU

Layerweaver almost fully (Geomean 99.7% / 91.3% for Compute / Memory) utilizes active cycles

ResNeXt causes Inherent Memory Idle Time and about 29-31% drop in memory active cycles (Red box)
* As we discussed this drop is not attributed to scheduling decisions

Memory- or Compute-only suffers severely from either compute or memory bandwidth underutilization

Al-MT shows sub-optimal results due to imprecise estimation of resource idle time
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Scheduling Overhead

= Layerweaver scheduler has O(kN) complexity
* k: # of candidate models, N: total # of layers to schedule

» Carefully modeled scheduling overhead on a host processor
* Intel i7-7700K CPU @ 4.20GHz
* Greedy Scheduler Throughput is 15 layers / us

= Compared to the single batch-1 layer latency which ranges from 4.7us to 221us
* The scheduling overhead is negligible
» Also, scheduling happens off-critical path most of the time using host CPU

= Thus, Layerweaver can flexibly support dynamically-changing request patterns at runtime
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Layerweaver: Maximizing NPU Resource Utilization

r N
Layerweaver efficiently interweaves layer-wise execution of multiple DNNs to maximize

resource utilization and throughput of NPU by utilizing a lightweight scheduler
\ J

= Proposes a lightweight scheduling algorithm that efficiently interleaves multiple DNNs

= Carefully considers on-chip memory size, output forwarding, and starvation

= Does not require special hardware support to be readily applicable to existing NPUs

= Achieves high throughput and nearly-full resource utilization on 16 pairs of DNN models,

various inference scenarios, and NPUs
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