The 27th IEEE International Symposium on High-Performance Computer Architecture

Layerweaver: Maximizing Resource Utilization of
Neural Processing Units via Layer-Wise Scheduling

Young H. OhT, Seonghak Kim*, Yunho Jin*, Sam Son*, Jonghyun Bae*
Jongsung Lee*, Yeonhong Park®, Dong Uk Kim*, Tae Jun Ham*, Jae W. Lee*

SV,

& Y

Q %

Z 2

?n 1398 3
o

4
2 o

*Seoul National University *Sungkyunkwan University

Neural Processing Units for Clouds

= Hardware resources in Neural Processing Units (NPUs)
« Computing units (TOP/s), On-chip buffers (MB), Off-chip memory bandwidth (GB/s)

= Compute-to-Memory Bandwidth Ratio varies widely among NPUs

« According to target applications (Training or Inference), service scenarios, area budget, etc.

¢ Inference ® Training A General Purpose

200
_ . A100 f
Y 140 @ Cambricon (312 TFLOPS)
% *Sirib A RTX 3090 A100 T
= imba T
= 120 TPUv1 (1 chip) __ e ¢ (FP32)
9) NNP-| TPUV3 . NNP-T
2 80 7 (1.chip)
= ; S
S 4o |[EYETS e TPUV2 RTX 3090
O : (1 chip) A
¢ Centaur p (FP32)
0 Ncore

o) 200 400 600 800 1000 1200 1400 1600
Off-chip Memory Bandwidth (GB/s)

[Y=y

Oh et al. — Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling ¢}

Architecture & Code Optimization (ARC) Lab

Characteristics of DNN Models

= Arithmetic Intensity (Ops/Byte):

« How many compute operations are performed per byte loaded from off-chip DRAM

= The metric is determined by:
* Type of Layer: Convolution >> Depth-wise Convolution > Matrix Multiply > Embedding Lookup

» Batch Size: Large batch > Small batch
High Reuse, Relatively

Low Batch Matrix Multiplication, High Batch Convolution, Many Operations with Data
Embedding Lookup, etc. Depth-wise Convolution, etc.
: | ﬂ Y | ﬁ y | Ay | : |

. R an: '

) A A A .
Off-chip DRAM ‘ —- - Off-chip DRAM

_ | - :
(Al | [Afay | ATy |
Shared Buffer (Shared Buffer

Low Reuse, Relatively Infrequent data fetch
Frequent New Data Fetch

Low Arithmetic Intensity High Arithmetic Intensity

Oh et al. — Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Schedulin Architecture & Code Optimization (ARC) Lab

NPU Resource Underutilization Problem

= NPU Capabilities = DNN Model Characteristics
Compute to Memory _ Throughput (Ops/sec) —~ Arithmetic _ # of total operations (Ops)
Bandwidth Ratio MemoryBandwidth (Bytes/sec) ~ Intensity Total size of data (Bytes)

Should be balanced for high resource utilization

/_L=_==\ = . e L K M\\i" = —_— s PRI

We need to close this gap between compute-to-memory bandwidth ratio (NPU)
and arithmetic intensity (DNN model) to achieve high utilization.

K vmwmﬁﬂ)
U] IVIEMOoTy Banawiatn (GB/35) ———

| during the legislative process...

i Low Arithmetic Intensity

Question

Off-ChIp DRAM I Which governing bodies have veto

power?

Oh et al. — Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Schedulin B Architecture & Code Optimization (ARC) Lab 4

NPU Resource Underutilization Problem

= No one-size-fits-all NPUs for various DNN models and batch sizes

« Compute-centric accelerators are well-suited for Vision Tasks

 Memory-centric accelerators prefers NLP & Recommendation Tasks

= Significant mismatch between Arithmetic Intensity and Compute-to-Memory BW ratio

--BB(8-BL }o-NCF -a-XL ©-IC #MN -0-RN 4-RX Ao Longer memory access time
10000 ‘ Memory Util.
Comp-centric ves
Goya .
o NNP-| Compute Util. h
% 1000 Cambricon .
5 Eyeriss y . Longer compute time
em-centric .
© 100 TPUV3 } emory Util.
Compute Util.
10 >

1 2 4 8 16
Arithmetic Intensity > Comp. to MemBW Ratio
* Each acronym corresponds to BERT-base (BB), BERT-large (BL), NCF recommendation (NCF), XLNet (XL), InceptionV3 (IC), MobileNetV2 (MN), ResNet50 (RN), ResNeXt50 (RX)

Time

Oh et al. — Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Schedulin Architecture & Code Optimization (ARC) Lab 5

NPU Resource Underutilization Problem

= This mismatch leads to Resource Underutilization

« Conventional way: Double-Buffering / Decoupled Access-and-Execution (Prefetching)

& Mem-intensive Model DRAM Channel Idle Time
Double-buffering Memory Util.
or Prefetching compute Util. h . %} -
\ 1 / \ 1 \ 1 L'_’
Compute Idle Time Comp-intensive Model

Imbalance between NPU and DNN models

Mem-intensive Model >

. Comp-intensive Model Time

1) Architecture & Code Optimization (ARC) Lab

Oh et al. — Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

NPU Resource Underutilization Problem

= This mismatch leads to Resource Underutilization

* Our Proposal: Layer-wise interleaving for balanced resource utilization

* Challenge: Finding a proper prefetch timing is non-trivial due to limited on-chip buffers
A DRAM Channel Idle Time

Double-buffering Memory Util.
or Prefetching Compute Util. h - % —
Y \ Y by

Compute Idle Time

Layer-wise Memory Util. | Large benefits w/ time-multiplexing
Interleaving Compute Util.

Mem-intensive Model >

. Comp-intensive Model Time

DI

Oh et al. — Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling ¢}

Architecture & Code Optimization (ARC) Lab

Layerweaver: Maximizing NPU Resource Utilization

r N
Layerweaver efficiently interweaves layer-wise execution of multiple DNNs to maximize

resource utilization and throughput of NPU by utilizing a lightweight scheduler
\ J

= Proposes a lightweight scheduling algorithm that efficiently interleaves multiple DNNs

= Carefully considers on-chip memory size, output forwarding, and starvation

= Does not require special hardware support to be readily applicable to existing NPUs

= Achieves high throughput and nearly-full resource utilization on 16 pairs of DNN models,

various inference scenarios, and NPUs

Oh et al. — Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling ‘\ Architecture & Code Optimization (ARC) Lab 8

Presentation Outline

= Building Efficient DNN Serving System w/ Layerweaver
* Overview of Greedy Scheduler w/ Service Requests
» Calculation of Compute and Memory Idle Time

» Layer Selection Process
= Evaluation

= Conclusions

Oh et al. — Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Schedulin Architecture & Code Optimization (ARC) Lab

Overview of Layerweaver Serving System

Other Workers Host Processor NPU
(Y Commands [p)
Greedy ': [)
Y Feedback Scheduler § PCle / NPU Core
’é) Finish any? ————
Comp-intensive == | Global Buf. J
Load i : i Interweaved . I
Balancer Mem-mtenilve — inst Stroams 44— Off-chip DRAM
! ! 7/ (Appended) \ J

Request Streams

= Assuming a frontend load balancer that distributes a mix of both memory- and compute-intensive

requests at pre-determined rates to worker nodes
= Host processor triggers the greedy, layer-wise scheduler when a schedulable batch is formed

= Greedy Scheduler accepts requests and adds them to the (scheduling) candidate group

* Then the scheduler selects the next layer to schedule from this candidate group leading to the
least idle time in compute/memory resources

Oh et al. — Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling Architecture & Code Optimization (ARC) Lab 10

Light-weight Scheduling Algorithm of Layerweaver

= Observation: To minimize idle time, keep a proper decoupling distance

= Def. Decoupling distance: Time difference btw. the last fetch completion (T,,) and computation finish (T,)

* Too long decoupling distance: Potential Memory Idle Time

* Too short decoupling distance: Potential Compute Idle Time

éon fecou rRor§ is full, Inputscha\?rt dec ||3|Pegpared
. M%Jrr%arry‘/cl%le Time A Compu eglpc{ﬁipﬂme
Memory C1 C2 W Memory C1 C2
Compute Cil C2 Compute c1 i c2 %
| | R | R
L Te Time T T. Time

* Dependence graph of input & output activation is omitted

Oh et al. — Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling L“" Architecture & Code Optimization (ARC) Lab 11

Light-weight Scheduling Algorithm of Layerweaver

= Calculating Compute Idle Time

* When too short decoupling distance exists, there could be Compute Idle Time

» Before starting computation of B1, the input data of B1 should be prepared

R Mem. Time R Mem. Time
S < >
—))
> .
Decoupling distance

-
Decoupling distance

Compute Idle Time =0 Compute Idle Time = Mem. Time - Decoupling distance

Oh et al. — Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

(thi) Architecture & Code Optimization (ARC) Lab | 12

Light-weight Scheduling Algorithm of Layerweaver

= Calculating Memory Idle Time

 When too large decoupling distance exists, there could be Memory Idle Time
* Free on-chip buffer size for now = 600 KB = 600 KB / 100 GB/s (Mem. BW) = 6 us

Time to fetch 600 KB (6us)

Compute Al

|

Decoupling distance

Memory Ildle Time =0

s
I

‘m’ Architecture & Code Optimization (ARC) Lab | 13

Oh et al. — Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

Light-weight Scheduling Algorithm of Layerweaver

= Calculating Memory Idle Time

 When too large decoupling distance exists, there could be Memory Idle Time
* Free on-chip buffer size for now = 600 KB = 600 KB / 100 GB/s (Mem. BW) = 6 us

Memory ldle Time = Decoupling distance - 6 us
A | Bl}a“fer size limit is met

Time to fetch 600 KB (6us)

Memory Al Bl I B1

Compute Al

s
I

‘m’ Architecture & Code Optimization (ARC) Lab | 14

Oh et al. — Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

Light-weight Scheduling Algorithm of Layerweaver

= Calculating Memory Idle Time (Cont’d)
* Some models have Inherent Memory ldle Time, which cannot be removed by scheduling

* To prevent additional memory idle time, keep minimum decoupling distance

Inherent Memory Idle Time Increased Memory Idle Time caused by
A (Scheduling cannot remove this) A B3 and its increased decoupling distance
< d
Miemory M ——— N7 AL
Compute ‘.| Al i B3 ". Al
Time f¥febl3nge Aegapnlingdistance The same amount available for prefetch

available for prefetch

Oh et al. — Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling L“E}" Architecture & Code Optimization (ARC) Lab 15

Light-weight Scheduling Algorithm of Layerweaver

= Layer Selection

» Detailed formal descriptions about every idle time case are available in our paper
« After exactly calculates the idle time of “each layers in progress” from K candidate requests ~ O(k)

« Select the layer that incurs minimum memory and compute idle time, and repeat for N layers ~ O(kN)

Host Processor

N
— ~ Tl
. : Request Q Model | Progress Idle Time

Comp-intensive Tol< o i 20
| NF]~

Mem-intensive M1 ' >
L C2 Layer 1 0 —> To NPU

y

Gaietittadd(ysygfter scheduling

Y
N

Oh et al. — Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling {;

3} Architecture & Code Optimization (ARC) Lab 16

Presentation Outline

= Fvaluation

= Conclusions

{88) Architecture & Code Optimization (ARC) Lab | 17

Evaluation Methodology & Inference Scenario

= Evaluation Scenario: Single- / Multi-batch Streams (Extended Single-stream in MLPerf [1])

= Accelerators: Memory-centric (Google TPUv3 style) & Compute-centric (Intel NNP-1 style) NPUs
= Baseline Strategy: Memory-only / Compute-only / Fair / AI-MT [2]
= Metrics: Normalized System Throughput (STP), Time Utilization (%)

Batch size

t;; = Processing time for jth query
of request i streams

Input Timeline for Multi-Batch Streams (# of Streams = 2)

[1] Reddi et al., "MLPerf Inference Benchmark”, ISCA '20
[2] Baek et al., “A Multi-Neural Network Acceleration Architecture”, ISCA '20

W20y
TR RS
SR

i) Architecture & Code Optimization (ARC) Lab | 18

Oh et al. — Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

Performance Evaluation (System Throughput)

= Scenario: Single-Batch Streams (# of Streams = 2) on TPUv3-style NPU

= Layerweaver: 60.1% throughput increase over the baseline (Fair)

= Against Al-MT: Layerweaver shows 21.6% higher geomean STP than AI-MT
* Al-MT: State-of-the-art time-multiplexed DNN multi-tasking technique
» Layerweaver estimates the resource idle time more precisely than Al-MT based on a simple heuristic

For various Multi-Batch Streams configurations, Layerweaver outperforms all the other schemes Smaller benefits w/
biased config.

[A-MT BB Layerweaver 3 A-MT Bl Layerwea%

£ 100 < 60 |

1= IS

(] (0]

5 £ 40

> >

S 5

£ £ 20

o o

& » 0
1 2 4 8 16 1 2 4 8 16

Batch Size Batch Size
Memory-centric NPU Compute-centric NPU
Single-Batch Streams (# of Streams = 2) Multi-Batch Streams (# of Streams = 2, Geomean)

Oh et al. — Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling (i

Architecture & Code Optimization (ARC) Lab 19

Overall NPU Resource Utilization

Evaluation Scenario: Single-Batch Streams (# of Streams = 2) w/ TPUv3-style NPU

Layerweaver almost fully (Geomean 99.7% / 91.3% for Compute / Memory) utilizes active cycles

ResNeXt causes Inherent Memory Idle Time and about 29-31% drop in memory active cycles (Red box)
* As we discussed this drop is not attributed to scheduling decisions

Memory- or Compute-only suffers severely from either compute or memory bandwidth underutilization

Al-MT shows sub-optimal results due to imprecise estimation of resource idle time

1 Memory only [Fair EE2 Compute only [AlI-MT I Layerweaver

] 100 1 1004
O
3 50- 50 -
>
& L0 0N 0 O A 10N | | .
XD E RN ER >N &R o SRS
QR FL QT L QI RN A RO I
X X X xe X X X xé e X
ST F & dFy \C’\Q\C’o@@@i@o S
Compute (PE) Active Cycles Memory (DRAM) Active Cycles

Oh et al. — Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling {5 Architecture & Code Optimization (ARC) Lab 20

Scheduling Overhead

= Layerweaver scheduler has O(kN) complexity
* k: # of candidate models, N: total # of layers to schedule

» Carefully modeled scheduling overhead on a host processor
* Intel i7-7700K CPU @ 4.20GHz
* Greedy Scheduler Throughput is 15 layers / us

= Compared to the single batch-1 layer latency which ranges from 4.7us to 221us
* The scheduling overhead is negligible
» Also, scheduling happens off-critical path most of the time using host CPU

= Thus, Layerweaver can flexibly support dynamically-changing request patterns at runtime

Oh et al. — Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling ‘@M: Architecture & Code Optimization (ARC) Lab 21

L

Layerweaver: Maximizing NPU Resource Utilization

r N
Layerweaver efficiently interweaves layer-wise execution of multiple DNNs to maximize

resource utilization and throughput of NPU by utilizing a lightweight scheduler
\ J

= Proposes a lightweight scheduling algorithm that efficiently interleaves multiple DNNs

= Carefully considers on-chip memory size, output forwarding, and starvation

= Does not require special hardware support to be readily applicable to existing NPUs

= Achieves high throughput and nearly-full resource utilization on 16 pairs of DNN models,

various inference scenarios, and NPUs

Oh et al. — Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling ‘\ Architecture & Code Optimization (ARC) Lab 22

The 27th IEEE International Symposium on High-Performance Computer Architecture

Layerweaver: Maximizing Resource Utilization of
Neural Processing Units via Layer-Wise Scheduling

Young H. OhT, Seonghak Kim*, Yunho Jin*, Sam Son*, Jonghyun Bae*
Jongsung Lee*, Yeonhong Park®, Dong Uk Kim*, Tae Jun Ham*, Jae W. Lee*

S V\\QWA/\/ ¢
&
<

&

%5 :
0

1398

Y
((\
=
%
;/

-1 N
o” \9’
e
R a3y oy S

*Seoul National University TSungkyunkwan University

Author Contact Info: younghwan@skku.edu

