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Neural Processing Units for Clouds
§ Hardware resources in Neural Processing Units (NPUs)
• Computing units (TOP/s), On-chip buffers (MB), Off-chip memory bandwidth (GB/s)

§ Compute-to-Memory Bandwidth Ratio varies widely among NPUs
• According to target applications (Training or Inference), service scenarios, area budget, etc.
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Characteristics of DNN Models
§ Arithmetic Intensity (Ops/Byte):
• How many compute operations are performed per byte loaded from off-chip DRAM

§ The metric is determined by:

• Type of Layer: Convolution >> Depth-wise Convolution > Matrix Multiply > Embedding Lookup

• Batch Size: Large batch > Small batch
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NPU Resource Underutilization Problem

§ NPU Capabilities
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§ DNN Model Characteristics
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NPU Resource Underutilization Problem
§ No one-size-fits-all NPUs for various DNN models and batch sizes
• Compute-centric accelerators are well-suited for Vision Tasks

• Memory-centric accelerators prefers NLP & Recommendation Tasks

§ Significant mismatch between Arithmetic Intensity and Compute-to-Memory BW ratio
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* Each acronym corresponds to BERT-base (BB), BERT-large (BL), NCF recommendation (NCF), XLNet (XL), InceptionV3 (IC), MobileNetV2 (MN), ResNet50 (RN), ResNeXt50 (RX)
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NPU Resource Underutilization Problem
§ This mismatch leads to Resource Underutilization

• Conventional way: Double-Buffering / Decoupled Access-and-Execution (Prefetching)
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NPU Resource Underutilization Problem
§ This mismatch leads to Resource Underutilization

• Conventional way: Double-Buffering / Decoupled Access-and-Execution (Prefetching)

• Problem: Sub-optimal scheduling as interleaving over the model boundary is not allowed
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• Challenge: Finding a proper prefetch timing is non-trivial due to limited on-chip buffers
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Layerweaver: Maximizing NPU Resource Utilization
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Layerweaver efficiently interweaves layer-wise execution of multiple DNNs to maximize 
resource utilization and throughput of NPU by utilizing a lightweight scheduler

§ Proposes a lightweight scheduling algorithm that efficiently interleaves multiple DNNs

§ Carefully considers on-chip memory size, output forwarding, and starvation

§ Does not require special hardware support to be readily applicable to existing NPUs

§ Achieves high throughput and nearly-full resource utilization on 16 pairs of DNN models, 

various inference scenarios, and NPUs
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§ Resource Underutilization Problem of DNN Accelerators

§ Layerweaver: Maximizing Temporal Resource Utilization

§ Building Efficient DNN Serving System w/ Layerweaver

• Overview of Greedy Scheduler w/ Service Requests

• Calculation of Compute and Memory Idle Time

• Layer Selection Process

§ Evaluation

§ Conclusions

Presentation Outline
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Overview of Layerweaver Serving System

§ Assuming a frontend load balancer that distributes a mix of both memory- and compute-intensive
requests at pre-determined rates to worker nodes

§ Host processor triggers the greedy, layer-wise scheduler when a schedulable batch is formed

§ Greedy Scheduler accepts requests and adds them to the (scheduling) candidate group

• Then the scheduler selects the next layer to schedule from this candidate group leading to the 
least idle time in compute/memory resources
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Light-weight Scheduling Algorithm of Layerweaver

§ Observation: To minimize idle time, keep a proper decoupling distance

§ Def. Decoupling distance: Time difference btw. the last fetch completion (Tm) and computation finish (Tc)

• Too long decoupling distance: Potential Memory Idle Time

• Too short decoupling distance: Potential Compute Idle Time
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Light-weight Scheduling Algorithm of Layerweaver
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§ Calculating Compute Idle Time
• When too short decoupling distance exists, there could be Compute Idle Time

• Before starting computation of B1, the input data of B1 should be prepared
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Light-weight Scheduling Algorithm of Layerweaver
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Time to fetch 600 KB (6us)

Light-weight Scheduling Algorithm of Layerweaver
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Light-weight Scheduling Algorithm of Layerweaver
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§ Calculating Memory Idle Time (Cont’d)
• Some models have Inherent Memory Idle Time, which cannot be removed by scheduling

• To prevent additional memory idle time, keep minimum decoupling distance
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§ Layer Selection
• Detailed formal descriptions about every idle time case are available in our paper

• After exactly calculates the idle time of “each layers in progress” from K candidate requests ~ O(k)

• Select the layer that incurs minimum memory and compute idle time, and repeat for N layers ~ O(kN)

Model Progress

C0 -

M1 -

C2 -

Idle Time

20

5

0 To NPU

Selected layer after scheduling

Layer 1

Candidate Group



Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization  of Neural Processing Units via Layer-Wise Scheduling

§ Resource Underutilization Problem of DNN Accelerators

§ Layerweaver: Maximizing Temporal Resource Utilization

§ Building Efficient DNN Serving System w/ Layerweaver

• Overview of Greedy Scheduler w/ Service Requests

• Calculation of Compute and Memory Idle Time

• Layer Selection Process

§ Evaluation

§ Conclusions

Presentation Outline
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Evaluation Methodology & Inference Scenario
§ Evaluation Scenario: Single- / Multi-batch Streams (Extended Single-stream in MLPerf [1])

§ Accelerators: Memory-centric (Google TPUv3 style) & Compute-centric (Intel NNP-I style) NPUs

§ Baseline Strategy: Memory-only / Compute-only / Fair / AI-MT [2]

§ Metrics: Normalized System Throughput (STP), Time Utilization (%)
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[1] Reddi et al., ”MLPerf Inference Benchmark”, ISCA ’20
[2] Baek et al., “A Multi-Neural Network Acceleration Architecture”, ISCA ’20
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Performance Evaluation (System Throughput)
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§ Scenario: Single-Batch Streams (# of Streams = 2) on TPUv3-style NPU

§ Layerweaver: 60.1% throughput increase over the baseline (Fair)

§ Against AI-MT: Layerweaver shows 21.6% higher geomean STP than AI-MT
• AI-MT: State-of-the-art time-multiplexed DNN multi-tasking technique
• Layerweaver estimates the resource idle time more precisely than AI-MT based on a simple heuristic

§ For various Multi-Batch Streams configurations, Layerweaver outperforms all the other schemes
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Overall NPU Resource Utilization
§ Evaluation Scenario: Single-Batch Streams (# of Streams = 2) w/ TPUv3-style NPU

§ Layerweaver almost fully (Geomean 99.7% / 91.3% for Compute / Memory) utilizes active cycles

§ ResNeXt causes Inherent Memory Idle Time and about 29-31% drop in memory active cycles (Red box)
• As we discussed this drop is not attributed to scheduling decisions

§ Memory- or Compute-only suffers severely from either compute or memory bandwidth underutilization

§ AI-MT shows sub-optimal results due to imprecise estimation of resource idle time
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Scheduling Overhead
§ Layerweaver scheduler has O(kN) complexity
• k: # of candidate models, N: total # of layers to schedule

§ Carefully modeled scheduling overhead on a host processor
• Intel i7-7700K CPU @ 4.20GHz
• Greedy Scheduler Throughput is 15 layers / us

§ Compared to the single batch-1 layer latency which ranges from 4.7us to 221us
• The scheduling overhead is negligible
• Also, scheduling happens off-critical path most of the time using host CPU

§ Thus, Layerweaver can flexibly support dynamically-changing request patterns at runtime
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Layerweaver: Maximizing NPU Resource Utilization
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§ Proposes a lightweight scheduling algorithm that efficiently interleaves multiple DNNs

§ Carefully considers on-chip memory size, output forwarding, and starvation

§ Does not require special hardware support to be readily applicable to existing NPUs

§ Achieves high throughput and nearly-full resource utilization on 16 pairs of DNN models, 

various inference scenarios, and NPUs

Layerweaver efficiently interweaves layer-wise execution of multiple DNNs to maximize 
resource utilization and throughput of NPU by utilizing a lightweight scheduler
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