
Layerweaver: Maximizing Resource Utilization of
Neural Processing Units via Layer-Wise Scheduling

Young H. Oh† , Seonghak Kim*, Yunho Jin*, Sam Son*, Jonghyun Bae*
Jongsung Lee*, Yeonhong Park*, Dong Uk Kim*, Tae Jun Ham*, Jae W. Lee*

The 27th IEEE International Symposium on High-Performance Computer Architecture

*Seoul National University †Sungkyunkwan University

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

Neural Processing Units for Clouds
§ Hardware resources in Neural Processing Units (NPUs)
• Computing units (TOP/s), On-chip buffers (MB), Off-chip memory bandwidth (GB/s)

§ Compute-to-Memory Bandwidth Ratio varies widely among NPUs
• According to target applications (Training or Inference), service scenarios, area budget, etc.

2

TPUv1 (1 chip)

Eyeriss

NNP-I

Cambricon

Centaur
Ncore

Simba

TPUv3
(1 chip)
TPUv2
(1 chip)

NNP-T

RTX 3090

RTX 3090
(FP32)

A100
(FP32)

A100
(312 TFLOPS)

0

40

80

120

160

200

0 200 400 600 800 1000 1200 1400 1600

Co
m

pu
te

 (T
O

P/
s)

Off-chip Memory Bandwidth (GB/s)

Inference Training General Purpose

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

Characteristics of DNN Models
§ Arithmetic Intensity (Ops/Byte):
• How many compute operations are performed per byte loaded from off-chip DRAM

§ The metric is determined by:

• Type of Layer: Convolution >> Depth-wise Convolution > Matrix Multiply > Embedding Lookup

• Batch Size: Large batch > Small batch

3

Off-chip DRAM
Off-chip DRAM

Off-chip DRAM
Off-chip DRAM

Low Reuse, Relatively
Frequent New Data Fetch

Low Arithmetic Intensity

Off-chip DRAM
Off-chip DRAM

Off-chip DRAM
Off-chip DRAM

Infrequent data fetch

High Arithmetic Intensity

PE
Array

PE
Array

PE
Array

PE
Array

PE
Array

PE
Array

PE
Array

PE
Array

PE
Array

Shared Buffer

High Batch Convolution,
Depth-wise Convolution, etc.

Low Batch Matrix Multiplication,
Embedding Lookup, etc.

PE
Array

PE
Array

PE
Array

PE
Array

PE
Array

PE
Array

PE
Array

PE
Array

PE
Array

Shared Buffer

High Reuse, Relatively
Many Operations with Data

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

NPU Resource Underutilization Problem

§ NPU Capabilities

4

§ DNN Model Characteristics

Throughput (TOP/s)

Memory Bandwidth (GB/s)Global Shared Buffer

PE

PE

PE

PE

PE

PE

PE

PE

PE

Off-chip DRAM

Compute-bound (e.g. CNNs)
High Arithmetic Intensity

Memory-bound (e.g. NLP)
Low Arithmetic Intensity

Arithmetic
Intensity

Compute to Memory
Bandwidth Ratio

Should be balanced for high resource utilization

≈

We need to close this gap between compute-to-memory bandwidth ratio (NPU)
and arithmetic intensity (DNN model) to achieve high utilization.

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

NPU Resource Underutilization Problem
§ No one-size-fits-all NPUs for various DNN models and batch sizes
• Compute-centric accelerators are well-suited for Vision Tasks

• Memory-centric accelerators prefers NLP & Recommendation Tasks

§ Significant mismatch between Arithmetic Intensity and Compute-to-Memory BW ratio

10

100

1000

10000

1 2 4 8 16

O
P/

By
te

Batch Size

BB BL NCF XL IC MN RN RX

TPUv3

Eyeriss

Goya
NNP-I
Cambricon

Comp-centric

Mem-centric

5

* Each acronym corresponds to BERT-base (BB), BERT-large (BL), NCF recommendation (NCF), XLNet (XL), InceptionV3 (IC), MobileNetV2 (MN), ResNet50 (RN), ResNeXt50 (RX)

…
Longer compute time

TPUv3

…
Longer memory access time

Arithmetic Intensity < Comp. to MemBW RatioArithmetic Intensity > Comp. to MemBW Ratio

Compute Util.

Memory Util.

Time

Compute Util.

Memory Util.

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

NPU Resource Underutilization Problem
§ This mismatch leads to Resource Underutilization

• Conventional way: Double-Buffering / Decoupled Access-and-Execution (Prefetching)

6

Imbalance between NPU and DNN models

Time

DRAM Channel Idle Time

Compute Idle Time

Double-buffering
or Prefetching Compute Util.

Memory Util.

Mem-intensive Model

Comp-intensive Model

Mem-intensive Model

Comp-intensive Model

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

NPU Resource Underutilization Problem
§ This mismatch leads to Resource Underutilization

• Conventional way: Double-Buffering / Decoupled Access-and-Execution (Prefetching)

• Problem: Sub-optimal scheduling as interleaving over the model boundary is not allowed

7

Time

Large benefits w/ time-multiplexing

DRAM Channel Idle Time

Compute Idle Time

Mem-intensive Model

Comp-intensive Model

Double-buffering
or Prefetching Compute Util.

Memory Util.

Layer-wise
Interleaving Compute Util.

Memory Util.

• Our Proposal: Layer-wise interleaving for balanced resource utilization

• Challenge: Finding a proper prefetch timing is non-trivial due to limited on-chip buffers

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

Layerweaver: Maximizing NPU Resource Utilization

8

Layerweaver efficiently interweaves layer-wise execution of multiple DNNs to maximize
resource utilization and throughput of NPU by utilizing a lightweight scheduler

§ Proposes a lightweight scheduling algorithm that efficiently interleaves multiple DNNs

§ Carefully considers on-chip memory size, output forwarding, and starvation

§ Does not require special hardware support to be readily applicable to existing NPUs

§ Achieves high throughput and nearly-full resource utilization on 16 pairs of DNN models,

various inference scenarios, and NPUs

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

§ Resource Underutilization Problem of DNN Accelerators

§ Layerweaver: Maximizing Temporal Resource Utilization

§ Building Efficient DNN Serving System w/ Layerweaver

• Overview of Greedy Scheduler w/ Service Requests

• Calculation of Compute and Memory Idle Time

• Layer Selection Process

§ Evaluation

§ Conclusions

Presentation Outline

9

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

Overview of Layerweaver Serving System

§ Assuming a frontend load balancer that distributes a mix of both memory- and compute-intensive
requests at pre-determined rates to worker nodes

§ Host processor triggers the greedy, layer-wise scheduler when a schedulable batch is formed

§ Greedy Scheduler accepts requests and adds them to the (scheduling) candidate group

• Then the scheduler selects the next layer to schedule from this candidate group leading to the
least idle time in compute/memory resources

10

Off-chip DRAM

Host Processor NPU

Greedy
Scheduler

Commands

Finish any?

PCIe

Request Q

Other Workers

M
2

C2 C1
M

1

Comp-intensive

Mem-intensive
Load

Balancer

Feedback

Interweaved
Inst. Streams

(Appended)

NPU Core

Global Buf.

Request Streams

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

Light-weight Scheduling Algorithm of Layerweaver

§ Observation: To minimize idle time, keep a proper decoupling distance

§ Def. Decoupling distance: Time difference btw. the last fetch completion (Tm) and computation finish (Tc)

• Too long decoupling distance: Potential Memory Idle Time

• Too short decoupling distance: Potential Compute Idle Time

11

Time

C1

C1

C2

C2

Compute

Memory

Tm TcTime

C1

C1

C2

C2

Compute

Memory

Tm Tc

* Dependence graph of input & output activation is omitted

On-chip memory is full,
Memory Idle Time

Long decoupling
distance

Short decoupling
distanceInput data not yet prepared,

Compute Idle Time

…

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

Light-weight Scheduling Algorithm of Layerweaver

12

§ Calculating Compute Idle Time
• When too short decoupling distance exists, there could be Compute Idle Time

• Before starting computation of B1, the input data of B1 should be prepared

A1

A1

Compute

Memory

Compute Idle Time = 0

A2

A2

Mem. Time

Decoupling distance

A1

A1

Compute

Memory

Decoupling distance

B1

B1

Compute Idle Time = Mem. Time – Decoupling distance

Mem. Time

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

Light-weight Scheduling Algorithm of Layerweaver

13

A1

Compute

Memory

A1

§ Calculating Memory Idle Time
• When too large decoupling distance exists, there could be Memory Idle Time

• Free on-chip buffer size for now = 600 KB

Time to fetch 600 KB (6us)

A2

= 600 KB / 100 GB/s (Mem. BW) = 6 us

Memory Idle Time = 0

Decoupling distance

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

Time to fetch 600 KB (6us)

Light-weight Scheduling Algorithm of Layerweaver

14

A1

A1

Compute

Memory B1

§ Calculating Memory Idle Time
• When too large decoupling distance exists, there could be Memory Idle Time

• Free on-chip buffer size for now = 600 KB

B1

Memory Idle Time = Decoupling distance – 6 us

= 600 KB / 100 GB/s (Mem. BW) = 6 us

Buffer size limit is met

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

Light-weight Scheduling Algorithm of Layerweaver

15

§ Calculating Memory Idle Time (Cont’d)
• Some models have Inherent Memory Idle Time, which cannot be removed by scheduling

• To prevent additional memory idle time, keep minimum decoupling distance

A1

A1

B3…A1

A1

Compute

Memory

…

Time for “total” on-chip buffer size
available for prefetch

Inherent Memory Idle Time
(Scheduling cannot remove this)

Very large decoupling distance The same amount available for prefetch

Increased Memory Idle Time caused by
B3 and its increased decoupling distance

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

Host Processor

Greedy Scheduler

Request Q

C1
M

1

Comp-intensive

Mem-intensive

C2

Light-weight Scheduling Algorithm of Layerweaver

16

§ Layer Selection
• Detailed formal descriptions about every idle time case are available in our paper

• After exactly calculates the idle time of “each layers in progress” from K candidate requests ~ O(k)

• Select the layer that incurs minimum memory and compute idle time, and repeat for N layers ~ O(kN)

Model Progress

C0 -

M1 -

C2 -

Idle Time

20

5

0 To NPU

Selected layer after scheduling

Layer 1

Candidate Group

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

§ Resource Underutilization Problem of DNN Accelerators

§ Layerweaver: Maximizing Temporal Resource Utilization

§ Building Efficient DNN Serving System w/ Layerweaver

• Overview of Greedy Scheduler w/ Service Requests

• Calculation of Compute and Memory Idle Time

• Layer Selection Process

§ Evaluation

§ Conclusions

Presentation Outline

17

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

Evaluation Methodology & Inference Scenario
§ Evaluation Scenario: Single- / Multi-batch Streams (Extended Single-stream in MLPerf [1])

§ Accelerators: Memory-centric (Google TPUv3 style) & Compute-centric (Intel NNP-I style) NPUs

§ Baseline Strategy: Memory-only / Compute-only / Fair / AI-MT [2]

§ Metrics: Normalized System Throughput (STP), Time Utilization (%)

18

[1] Reddi et al., ”MLPerf Inference Benchmark”, ISCA ’20
[2] Baek et al., “A Multi-Neural Network Acceleration Architecture”, ISCA ’20

Input Timeline for Multi-Batch Streams (# of Streams = 2)

ti j = Processing time for jth query
of request i streams

t10 t11 t12

t00 t01 t03t02

…

…

N

M

Batch size

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

Performance Evaluation (System Throughput)

19

§ Scenario: Single-Batch Streams (# of Streams = 2) on TPUv3-style NPU

§ Layerweaver: 60.1% throughput increase over the baseline (Fair)

§ Against AI-MT: Layerweaver shows 21.6% higher geomean STP than AI-MT
• AI-MT: State-of-the-art time-multiplexed DNN multi-tasking technique
• Layerweaver estimates the resource idle time more precisely than AI-MT based on a simple heuristic

§ For various Multi-Batch Streams configurations, Layerweaver outperforms all the other schemes

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�
��
��
�

��
��
�

��
��
�

��
��
��
��
��
��

��
��

��
��
�

��
��
�

��
��
�

��
��
�

�'
31
'!
2

�

��

��

��

���

��
��
-1
68
3=
'1

'2
;�l
¦
m

$,�07 /D\HUZHDYHU

Single-Batch Streams (# of Streams = 2)

� � � � ��
�D�

�

��

��

��

67
3�
LP
SU
RY
HP

HQ
W��
�
�

$,�07 /D\HUZHDYHU

� � � � ��
�E�

Multi-Batch Streams (# of Streams = 2, Geomean)

Memory-centric NPU Compute-centric NPU

Smaller benefits w/
biased config.

Batch Size Batch Size

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

Overall NPU Resource Utilization
§ Evaluation Scenario: Single-Batch Streams (# of Streams = 2) w/ TPUv3-style NPU

§ Layerweaver almost fully (Geomean 99.7% / 91.3% for Compute / Memory) utilizes active cycles

§ ResNeXt causes Inherent Memory Idle Time and about 29-31% drop in memory active cycles (Red box)
• As we discussed this drop is not attributed to scheduling decisions

§ Memory- or Compute-only suffers severely from either compute or memory bandwidth underutilization

§ AI-MT shows sub-optimal results due to imprecise estimation of resource idle time

20

Compute (PE) Active Cycles Memory (DRAM) Active Cycles

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�
��
��
�

��
��
�

��
��
�

��
��
��
��
��
��

��
��

��
��
�

��
��
�

��
��
�

��
��
�

�'
31
'!
2

�

��

���

�
$;
-=
'�
�@
$£
'9
�l¦

m

�'138@�32£@
!-8 �316<;'�32£@ �f�� �!@'8>'!='8

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�
��
��
�

��
��
�

��
��
�

��
��
��
��
��
��

��
��

��
��
�

��
��
�

��
��
�

��
��
�

�'
31
'!
2

�

��

���

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

Scheduling Overhead
§ Layerweaver scheduler has O(kN) complexity
• k: # of candidate models, N: total # of layers to schedule

§ Carefully modeled scheduling overhead on a host processor
• Intel i7-7700K CPU @ 4.20GHz
• Greedy Scheduler Throughput is 15 layers / us

§ Compared to the single batch-1 layer latency which ranges from 4.7us to 221us
• The scheduling overhead is negligible
• Also, scheduling happens off-critical path most of the time using host CPU

§ Thus, Layerweaver can flexibly support dynamically-changing request patterns at runtime

21

Architecture & Code Optimization (ARC) LabOh et al. ─ Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling

Layerweaver: Maximizing NPU Resource Utilization

22

§ Proposes a lightweight scheduling algorithm that efficiently interleaves multiple DNNs

§ Carefully considers on-chip memory size, output forwarding, and starvation

§ Does not require special hardware support to be readily applicable to existing NPUs

§ Achieves high throughput and nearly-full resource utilization on 16 pairs of DNN models,

various inference scenarios, and NPUs

Layerweaver efficiently interweaves layer-wise execution of multiple DNNs to maximize
resource utilization and throughput of NPU by utilizing a lightweight scheduler

Layerweaver: Maximizing Resource Utilization of
Neural Processing Units via Layer-Wise Scheduling

Young H. Oh† , Seonghak Kim*, Yunho Jin*, Sam Son*, Jonghyun Bae*
Jongsung Lee*, Yeonhong Park*, Dong Uk Kim*, Tae Jun Ham*, Jae W. Lee*

*Seoul National University †Sungkyunkwan University

Author Contact Info: younghwan@skku.edu

The 27th IEEE International Symposium on High-Performance Computer Architecture

