
SSDStreamer:
Specializing I/O Stack
for Large-Scale
Machine Learning

Jonghyun Bae
Seoul National University

Hakbeom Jang
Sungkyunkwan University

Jeonghun Gong
Seoul National University

Wenjing Jin
Seoul National University

Shine Kim
Seoul National University

Jaeyoung Jang
Sungkyunkwan University

Tae Jun Ham
Seoul National University

Jinkyu Jeong
Sungkyunkwan University

Jae W. Lee
Seoul National University

Abstract—This article presents SSDStreamer, an SSD-based caching system for large-

scale machine learning. By using DRAM as stream buffer, instead of an upper-level cache,

SSDStreamer significantly outperforms state-of-the-art multilevel caching systems on

Apache Spark, while requiring much less DRAM capacity.

& ITERATIVE ALGORITHMS ARE at the core of many

machine learning (ML) algorithms, which update

estimates of the exact solution through an

iterative process. Examples include optimiza-

tion problems that search for the value of an

argument to maximize or minimize a function.

For these algorithms, in-memory caching is

widely adopted, such as Spark MLlib1 and

Ignite ML,2 to reuse the intermediate results

by later computations and provide much

higher throughput and lower latency than the

Digital Object Identifier 10.1109/MM.2019.2930497

Date of publication 23 July 2019; date of current version 10

September 2019.

Theme Article: Machine Learning AccelerationTheme Article: Machine Learning Acceleration

September/October 2019 Published by the IEEE Computer Society 0272-1732 � 2019 IEEE 73
Authorized licensed use limited to: Seoul National University. Downloaded on February 18,2020 at 01:06:53 UTC from IEEE Xplore. Restrictions apply.

conventional disk-based framework. DRAM

device scaling is the key enabler of this tech-

nology, allowing hundreds of gigabytes of

memory to be installed on a single node at an

affordable cost. Thus, the success of this para-

digm in the future counts heavily on the con-

tinuation of DRAM scaling.

However, DRAM

scaling faces seri-

ous challenges, and

SSDs are a promis-

ing alternative to

substitute or aug-

ment DRAM-based

caching. Figure 1

shows the scaling

trends of DRAM

and SSD bit cost

over the past four decades we gathered from

various public sources.3;4 The figure shows a

significant slowdown of DRAM cost reduction

to be only 6% per year, while SSDs show much

healthier cost scaling curve during the same

period. Furthermore, an 8-lane PCIe Gen3

channel offers 6.4-GB/s peak bandwidth, which

will soon double with the arrival of PCIe Gen4.

This bandwidth will be comparable to that of

DDR4-1600 DIMM, which was the mainstream

around 2015.

A common approach to building an in-mem-

ory cache is to use DRAM as a primary cache

backed by SSDs as a secondary cache. However,

there is a serious performance drop when the

working set outgrows the DRAM size as most

requests are served by a slower SSD. Serializa-

tion adds an additional latency penalty to the

slow disk access. Also, the heavyweight kernel

I/O stack, both synchronous and asynchronous,

incurs significant CPU overhead, penalizing both

latency and throughput. Thus, an ideal caching

system must provide both low average latency

and high SSD bandwidth utilization with a small

DRAM footprint.

This article presents SSDStreamer, a novel

SSD-based caching system that retains the bene-

fits of fast DRAM caching at a fraction of its cost,

targeting large-scale ML frameworks. SSDStreamer

uses DRAM as a stream buffer for coarse-grained

prefetching from a large SSD cache built on top of

a lightweight user-space I/O stack. The stream

buffer generates a stream of coarse-grained pre-

fetch requests to better utilize SSD bandwidth and

hide its long latency as only the first request in a

stream misses, while the subsequent ones hit via

effective prefetching. Besides, SSD latency is fur-

ther reduced by employing a custom serializer.

We successfully evaluate SSDStreamer on

Apache Spark (MLlib),1 a popular in-memory

analytics framework using ML workloads from

HiBench.5 Spark on SSDStreamer with a 0.76-GB

streambuffer outperforms the state-of-the-artmul-

tilevel cache with 192-GB DRAM by 37.8% whose

working set is larger than available DRAM. If we

assume the same capacity of 192 GB, SSDStreamer

reduces the cost per gigabyte of the caching sys-

temby a factor of 30.2× over the DRAM-only cache.

Our contributions can be summarized as

follows.

� We analyze the performance of multiple in-

memory caching systems to identifymajor per-

formance bottlenecks in disk-based caches.

� We propose SSDStreamer, an SSD-based cach-

ing system,which eliminates those bottlenecks

by specializing the I/O stack for large-scale ML

processing.

� We provide detailed evaluation of Spark on

SSDStreamer to demonstrate superior perfor-

mance over state-of-the-art multilevel caches,

while usingmuch less DRAM.

BACKGROUND AND Motivation
In-memory processing frameworks cache fre-

quently reused data in memory to access them

fast. This eliminates a large portion of the disk I/

Os, thus, enabling high-throughput, low-latency

ML processing. However, as the effective work-

ing set size outgrows memory capacity, perfor-

mance is often bottlenecked by slow disk I/Os.

Figure 2 compares the per-task execution

time of two ML workloads on Spark (NWeight

and SVM) using three caching models. In

Spark, memory-only (M) stores all intermediate

data, called resilient distributed data sets

(RDDs), to memory as long as there is

free space. Memory-only discards cached data

when memory is full and recomputes them

when they are reused. As shown in Figure 2,

memory-only performs very well when the

This article presents

SSDStreamer, a novel

SSD-based caching

system that retains the

benefits of fast DRAM

caching at a fraction of

its cost, targeting large-

scale ML frameworks.

Machine Learning Acceleration

74 IEEE Micro

Authorized licensed use limited to: Seoul National University. Downloaded on February 18,2020 at 01:06:53 UTC from IEEE Xplore. Restrictions apply.

working set fits in memory

(labeled “Small” in Figure 2) but

poorly when the working set out-

grows memory size due to fre-

quent recomputation (hence not

shown in the figure).

Another caching model named

memory-and-disk (M+D) caches

data in memory, but when there is

no free space, the data are stored

(or migrated) to the disk instead.

This model naturally has the same

performance to memory-only for

small data but can achieve reason-

able performance for large data.

Finally, disk-only (D) always

caches data to the disk without

using memory at all. While this has lower perfor-

mance potential than the M+D (see SVM with

large input in Figure 2), it can achieve better per-

formance when the working set greatly exceeds

the memory size (see NWeight with large input)

due to excessive capacity misses at DRAM

cache.

The message of Figure 2 is simple. Spark

wastes most of the time on managing disk I/Os

(i.e., disk accesses and serialization) when the

working set is large, regardless of the choice of

caching model. And with the trend of ever-

increasing data size, this will become an even

more serious problem in the future.

SSDStreamer DESIGN

Overview

SSDStreamer is a lightweight user-space I/O

stack exposing a stream interface. Through the

effective use of SSD and small

DRAM as a stream buffer,

SSDStreamer aims to retain the

performance benefits of in-mem-

ory caching, while saving the cost

of DRAM for large-scale ML proc-

essing. Our strategies to achieve

this goal are as follows.

� Do not cache but stream. Stream

buffers6 are well suited for

coarse-grained caching pat-

terns of large-scale ML

frameworks. By rightsizing the request gran-

ularity, we can utilize SSD bandwidth effi-

ciently while minimizing the DRAM footprint.

� Substitute the general-purpose kernel I/O stack

with a specialized user-space I/O stack. A light-

weight user-space I/O stack allows us to

reduce the average latency by avoiding the

penalty of page cache management, context

switching, and interrupt handling.

� (De)serialize it fast. Our analysis shows the

cost of serialization in terms of CPU cycles

can be significant. A customized serializer

alleviates this problem.

Figure 3(a) overviews the SSDStreamer sys-

tem stack, whose details are to be discussed in

the rest of this section.

Stream Interface

To support data object streaming, we intro-

duce a stream data type. Typically, a stream is

Figure 1. Scaling trends of DRAM and SSD.

Figure 2. Task execution time breakdown for NWeight and SVM.

September/October 2019 75
Authorized licensed use limited to: Seoul National University. Downloaded on February 18,2020 at 01:06:53 UTC from IEEE Xplore. Restrictions apply.

allocated to each cached object (e.g., RDD parti-

tion in Spark). A stream consists of a sequence

of multiple, fine-grained stream blocks, or sblocks,

which serve as the basic unit of caching. The

concept of stream roughly corresponds to a file

in the conventional file system but is optimized

for a sequential access pattern with effective

coarse-grained prefetching.

Stream API. SSDStreamer exposes a simple,

easy-to-use API to control streams. Figure 4

shows a simple code example using Stream API

to (a) create a stream and (b) read it back to dis-

play on stdout. Since we intentionally design the

API in a similar style to the file API of a POSIX-

compliant OS, most of the functions are self-

explanatory [similar to open(), close(), read(),
and write()].

Stream Manager

Stream manager is responsible for receiving

requests for a stream and translating them to

device read/write requests handled by a user-

space NVMe SSD driver [i.e., Storage

Performance Development Kit

(SPDK)].7 The stream manager object

is created and attached to an NVMe

SSD by calling init_stream_manager
() [line 2 in Figure 4(a)]. The object is

a global structure shared by all

threads.

Managing Sblock metadata. Stream

manager maintains per-sblock meta-

data, which consist of a 4B starting log-

ical block address (LBA) and the

effective size of the sblock (4B). The

starting LBA is necessary because adja-

cent sblocks are not necessarily placed

in contiguous LBA space although

each sblock occupies a contiguous

LBA space. In addition, the effective

size of an sblock should be maintained

as the actual amount of data within the

sblock may be smaller than the prede-

fined static sblock size (e.g., 4 MB is

used for our evaluation). As shown in

Figure 3(b), the stream manager main-

tains this metadata in memory (i.e.,

LBA and the size) only for the very first

sblock of the stream. The lifetime of

sblock metadata spans that of the

stream itself [i.e., from create_stream
() to destroy_stream()]. Metadata for other

sblocks in the stream are attached to the end of

the preceding sblock’s data. This is possible

because sblocks in a stream are accessed sequen-

tially. We call this technique sblock chaining.

Thus, only 8B metadata per stream needs to be

maintained inmemory instead of 8Bmetadata per

every single sblock.

Managing DMA buffers. When a stream is cre-

ated or opened for read, the stream manager

allocates a stream buffer to the stream from the

buffer pool. A stream buffer is a circular FIFO

queue, which is sized to house multiple sblocks.

The number of sblocks contained in a stream

buffer is equivalent to the prefetch depth. Dur-

ing stream creation, this buffer is a place where

data passed by a write_stream() call are buff-

ered before it gets flushed to the disk. During

stream read, a stream buffer houses prefetched

sblocks. When the stream is closed, this buffer

is freed. The stream buffer is necessary only for

Figure 3. (a) SSDStreamer system stack. (b) Stream metadata structure and

sblock chaining.

Machine Learning Acceleration

76 IEEE Micro

Authorized licensed use limited to: Seoul National University. Downloaded on February 18,2020 at 01:06:53 UTC from IEEE Xplore. Restrictions apply.

the duration of stream creation or read opera-

tion itself.

Creating a stream. When create_stream() is

called which returns a handle (sd) for the

stream [line 3 in Figure 4(a)], followed by the

first write [write_stream() in Line 8], a set of

contiguous logical blocks in the SSD are

retrieved from the free block pool. Also, its

starting LBA and the first sblock’s effective size

are logged to the in-memory metadata of the

stream manager. In addition, a stream buffer is

allocated for this stream, and the payload data

for current write_stream() request are buffered

in the stream buffer. When the next block of

data is written to this stream (with another

write_stream() call), another set of contiguous

logical blocks are retrieved from the free block

pool, and its starting LBA and effective sblock

size are appended to the previous sblock’s data.

Then, the previous sblock’s data (appended

with current sblock’s metadata) are flushed to

the disk. At the same time, the data for the cur-

rent sblock are buffered in the stream buffer.

When the stream is closed by close_stream()
[line 10 in Figure 4(a)], an end-of-stream token

is appended to the current sblock’s data and

flushed to the disk.

Reading a stream with stream buffer. To read

data from a stream, open_stream() is invoked

[line 1 in Figure 4(b)]. Then, the stream man-

ager allocates a stream buffer to this stream

and retrieves the starting LBA and the size of

the first sblock from the stream table. With

this metadata, the stream manager starts read-

ing the very first sblock of this stream from the

disk and places it to the corresponding stream

buffer. Once it finishes reading the sblock, it

reads the LBA and effective size for the next

sblock, which are appended to the current

sblock’s data, and initiates disk access. This

process is continued as long as there is free

space in the stream buffer. When read_stream
() is called [line 5 in Figure 4(b)], the stream

manager returns the oldest sblock from the

corresponding stream buffer and frees the

space this sblock was occupying. In a steady

state this initiates another disk read for the

next sblock that needs to be fetched. With this

mechanism read_stream() typically returns

immediately because the requested data are

already buffered in the stream buffer. Essen-

tially, this mechanism enables disk accesses to

overlap with computation and can completely

hide disk access latency when the computation

is sufficiently long.

Destroying a stream. A stream is destroyed by

calling destroy_stream() [line 10 in Figure 4(b)].

Then, the streammanager first allocates a tempo-

rary 4-KB buffer to hold the data stored in the

last LBA of the sblock containing the metadata.

A stream manager computes the last LBA of the

first sblock using themetadata in the stream table

[i.e., starting LBA+ceil(effective sblock size/logi-

cal block size)-1] and reads it into the 4-KB buffer.

Then, the streammanager returns the list of LBAs

allocated to the first sblock to the free list. By

inspecting the last LBA of the sblock just freed,

the stream manager can retrieve the starting

LBA of the next sblock and free the list of LBAs

allocated to the sblock. This process continues

until an end-of-stream token is encountered.

Stream API also provides read_and_destroy_-
stream(), which performs destroy_stream()
while reading out data from the stream, which is

especially useful with a static data access pattern

that can pinpoint precisely to the last use of

the stream.

Lightweight Serializer

To store an object in an object-oriented lan-

guage to the disk, the system must serialize it

Figure 4. Stream API usage example. (a) Creating a stream.

(b) Reading a stream.

September/October 2019 77
Authorized licensed use limited to: Seoul National University. Downloaded on February 18,2020 at 01:06:53 UTC from IEEE Xplore. Restrictions apply.

into a sequence of bytes. For this purpose a seri-

alizer needs to copy its fields to the serialized

byte stream. Besides, if the object has a refer-

ence, the referenced object should be serialized

and included in the serialized byte stream as

well. As shown in Figure 2, (de)serialization

accounts for a substantial portion of task execu-

tion time for the M+D cache.

To reduce this overhead, we specialize the

Kryo serializer8 used in Spark and make it more

lightweight. In particular, we apply the following

two major changes. First, whenever possible, the

serializer replaces slow byte-by-byte copy with

fast object-granularity copy. In the context of

caching intermediate data (like RDDs in Spark), a

serialized object is always produced and con-

sumed in the same execution context. This

relaxes some of the portability concerns such as

byte ordering, memory layout, and data struc-

ture representations. Thus, strict byte-by-byte

copy to preserve compatibility across different

platforms is unnecessary.

Second, SSDStreamer progressively reads and

writes a serialized object (stream) to the disk at a

fixed-size granularity of sblock. The original Kryo

serializer initially allocates 4-KB buffers for (de)

serialization, and it can grow in size unboundedly

depending on the actual object size. This results

in an additional heap allocation and copy when-

ever the buffer is full. In contrast, the specialized

serializer writes the contents of the serialized

data directly to the off-heap streambuffer to elim-

inate this overhead.

EVALUATION

Methodology

System configurations. We use Spark 2.1.21 on

five Dell R730 nodes with one master and four

workers. Each node consists of two Intel Xeon

CPU E5-2640v3, two 1TB SAS SSDs for HDFS, and

two 1.6-TB Samsung PM1725 NVMe SSDs for cach-

ing. All nodes are connected by 40-Gb/s Infiniband.

Caching models. SSDStreamer (SST) is com-

pared with five models, including the M+D and

disk-only (D) discussed in the “Background and

Motivation” section.

� Alluxio (ALX): Alluxio9 offers a tiered storage

including off-heap DRAM and SSDs.

� Disk-only+Prefetching (PREF): Thismodel uses

the asynchronous kernel I/O library (libaio) to

quantify the benefits of prefetching, but with

no other optimizations.

� Disk-only+UserIO (USERIO): This model uses

the user-space NVMe driver (SPDK) to quan-

tify the benefits of the lightweight I/O stack,

but with no other optimizations.

M+D and ALX run with 256-GB DRAMper node:

64 GB for execution and 192 GB for caching. D,

PREP, USERIO, and SST use one-fourth of the

DRAM capacity per node (64 GB). In this setup, we

allocate 60 GB for execution, and the remaining is

allocated for page cache (4 GB in D), prefetching

(4 GB in PREP), buffers for user-space I/O (0.38 GB

in USERIO), and stream buffers (0.76 GB in SST).

We have carefully tuned the partition size to mini-

mize GC overhead as done in the article by Bae

et al.10

Benchmarks. We use 11 ML workloads

from the latest Intel HiBench 7.0.5 Although

the benchmark suite has 14 ML applications,

three of them are excluded as they do not

use the cache. We classify the applications into

two categories. Six applications spend a domi-

nant portion of total execution time computing

on cached data and are classified as cache-inten-

sive. The other five are classified as cache-light.

Note that the working set of cache-light work-

loads fits in memory, whereas that of cache-

intensive workloads do not.

Performance

Overall. Figure 5(a) shows the normalized exe-

cution time. SSDStreamer (SST) performs the best

among all the caching models being considered.

SST reduces the total execution time by 33.2% and

37.8% compared to the M+D and Alluxio (ALX),

which represent the state-of-the-art multilevel

caching organizations. Once the working set out-

grows the DRAM capacity, the multilevel caching

performs poorly due to a long storage access

time and the promotion/demotion time of cached

RDD partitions. SSDStreamer also outperforms

the disk-only (D), disk-only+Prefetching (PREF),

and disk-only+UserIO (USERIO) by 25.5%, 20.9%,

and 18.2%, respectively.

Execution time breakdown. Figure 5(b)

breaks down the task execution time into three

Machine Learning Acceleration

78 IEEE Micro

Authorized licensed use limited to: Seoul National University. Downloaded on February 18,2020 at 01:06:53 UTC from IEEE Xplore. Restrictions apply.

portions: computation (in white), serialization

(in gray), and disk access (in black).

SST effectively reduces the overhead of disk

access by 82.3% on average compared to D. By

comparing the disk access time between USERIO

and SST, we can quantify the effectiveness of pre-

fetching in the user-space I/O stack. The perfor-

mance impact of employing a user-space I/O stack

is captured by the difference of the disk access

time between PREF to SST. SST reduces the over-

head of disk access by 72.2% and 76.4% on average

compared to USERIO and PREF, respectively.

Finally, the proposed lightweight serializer

shows a significant reduction in SST by 59.6% on

average compared to D (similar reduction com-

pared to PREF and USERIO). To summarize, the

performance gains for SST are attributed to effec-

tive overlap of computation and disk I/O using

stream buffers and lightweight (de)serialization.

For the cache-light applications, SSDStreamer

slightly increases the total execution time by

7.4% compared to M+D. This is attributed to the

smaller cache footprint, allowing more execution

memory to be opportunistically allocated to JVM

heap in M+D (using 256 GB per node) than

SSDStreamer, which only uses 60 GB per node

for execution.

Power Consumption

To quantify the advantage of SSDStreamer in

power efficiency, we measure the node-level

power consumption using Dell’s Remote Access

Controller (iDRAC8). At the same time, we mea-

sure CPU and DRAM power consumption using

Intel’s Running Average Power Limit.

Figure 6 shows the breakdown of power con-

sumption for the M+D and SSDStreamer (SST).

SST reduces the node-level power consumption

Figure 5. (a) Normalized execution time. (b) Normalized task execution time breakdown.

Figure 6. Per-node power breakdown of memory-and-disk (M+D) and SSDStreamer (SST).

September/October 2019 79
Authorized licensed use limited to: Seoul National University. Downloaded on February 18,2020 at 01:06:53 UTC from IEEE Xplore. Restrictions apply.

by 10.9% on aver-

age compared to M

+D. DRAM and CPU

power consumption

decreased by 47.4%

and 7.2%, respec-

tively. SST has only

one-fourth of the

DRAM compared to

M+D to significantly

reduce DRAM

power consump-

tion. In addition,

the lightweight I/O

stack bypasses the heavyweight kernel I/O to

reduce CPU utilization (and hence power).

CONCLUSION
SSDStreamer is an SSD-based caching system

specialized for large-scale ML processing. To

achieve both low latency and high bandwidth

with a minimal DRAM footprint, SSDStreamer

uses DRAM as stream buffers for a large SSD

cachemanaged in a user space. SSDStreamer also

introduces a lightweight serializer to significantly

reduce the (de)serialization latency. The result-

ing design delivers competitive performance to a

large DRAM cache at a fraction of its cost.

SSDStreamer is the first to successfully demon-

strate the feasibility of replacing the DRAM cache

with a cost-effective SSD cache for large-scale ML

processing.

ACKNOWLEDGMENTS
This work was supported in part by the

Research Resettlement Fund for the new fac-

ulty of Seoul National University; in part by

a research grant from Samsung Electronics,

National Research Foundation of Korea grant

funded by the Ministry of Science, ICT &

Future Planning (PE Class Heterogeneous High

Performance Computer Development, NRF-

2016M3C4A7952587); and in part by the Com-

petency Development Program for Industry

Specialists of the Korean Ministry of Trade,

Industry and Energy (MOTIE), operated by the

Korea Institute for Advancement of Technol-

ogy (KIAT) (No. N0001883, HRD Program for

Intelligent Semiconductor Industry).

& REFERENCES

1. “Apache Spark,” 2017. [Online]. Available: https://

spark.apache.org/

2. “Apache Ignite,” 2019. [Online]. Available: https://

ignite.apache.org/.

3. “Newegg.com,” 2017. [Online]. Available: https://

www.newegg.com/

4. M. John C., “Price and Performance Changes of

Computer Technology with Time,” 2017. [Online].

Available: http://www.jcmit.net/

5. “Intel HiBench,” 2018. [Online]. Available: https://github.

com/Intel-bigdata/HiBench/

6. N. P. Jouppi, “Improving direct-mapped cache

performance by the addition of a small fully-

associative cache and prefetch buffers,” in Proc. 17th

Int. Symp. Comput. Architecture, 1990, pp. 364–373.

7. “Storage Performance Development Kit,” 2018.

[Online]. Available: http://www.spdk.io/

8. “Kryo Serializer,” 2018. [Online]. Available: https://

github.com/EsotericSoftware/kryo/

9. “Alluxio,” 2018. [Online]. Available: https://www.

alluxio.org/

10. J. Bae et al., “Jointly optimizing task granularity

and concurrency for in-memory mapreduce

frameworks,” in Proc. IEEE Int. Conf. Big Data, 2017,

pp. 130–140.

Jonghyun Bae is currently working toward a PhD

in computer science and engineering at Seoul

National University. His research areas include big

data processing and distributed systems. Contact

him at jonghbae@snu.ac.kr.

Hakbeom Jang has a PhD in electrical and com-

puter engineering from Sungkyunkwan University,

Seoul. His research interests include computer archi-

tecture, parallel programming, and big data process-

ing. Contact him at hakbeom@skku.edu.

Jeonghun Gong is currently working toward an

MS in computer science and engineering at Seoul

National University. His current research focuses

on hardware accelerator design. Contact him at

jh.gong@snu.ac.kr.

Wenjing Jin is currently working toward a PhD in

computer science and engineering at Seoul National

University. Her research interests include operating

systems and accelerator architectures. Contact her

at wenjing.jin@snu.ac.kr.

SSDStreamer is an

SSD-based caching

system specialized for

large-scale ML proc-

essing. To achieve

both low latency and

high bandwidth with a

minimal DRAM foot-

print, SSDStreamer

uses DRAM as stream

buffers for a large SSD

cache managed in a

user space.

Machine Learning Acceleration

80 IEEE Micro

Authorized licensed use limited to: Seoul National University. Downloaded on February 18,2020 at 01:06:53 UTC from IEEE Xplore. Restrictions apply.

https://spark.apache.org/
https://spark.apache.org/
https://ignite.apache.org/
https://ignite.apache.org/
https://www.newegg.com/
https://www.newegg.com/
http://www.jcmit.net/
https://github.com/Intel-bigdata/HiBench/
https://github.com/Intel-bigdata/HiBench/
http://www.spdk.io/
https://github.com/EsotericSoftware/kryo/
https://github.com/EsotericSoftware/kryo/
https://www.alluxio.org/
https://www.alluxio.org/

Shine Kim is currently working toward a PhD in

computer science and engineering at Seoul National

University. His research areas include computer

architecture and storage systems. Contact him at

postshine@snu.ac.kr.

Jaeyoung Jang is currently working toward a PhD

in electrical and computer engineering at Sungkyunk-

wan University, Seoul. His research interests include

computer architecture and big data processing. Con-

tact him at jaey86@skku.edu.

Tae Jun Ham is currently a postdoctoral researcher

with Seoul National University. He has a PhD inelectri-

cal engineering from Princeton University. His current

research focuses on hardware–software codesign for

emerging applications and computing systems. Con-

tact him at taejunham@snu.ac.kr.

Jinkyu Jeong is currently an assistant professor

with the College of Information and Communication

Engineering, Sungkyunkwan University, Seoul. He

has a PhD in computer science from the Korea

Advanced Institute of Science and Technology

(KAIST). His research interests include real-time sys-

tems, operating systems, virtualization, and embed-

ded systems. Contact him at jinkyu@skku.edu.

Jae W. Lee is currently an associate professor with

the Department of Computer Science and Engineer-

ing, Seoul National University. He has a PhD in

computer science from the Massachusetts Institute

of Technology (MIT). His research areas include

computer architecture, VLSI design, parallel pro-

gramming, and computer security. He is the corre-

sponding author. Contact him at jaewlee@snu.ac.kr.

September/October 2019 81
Authorized licensed use limited to: Seoul National University. Downloaded on February 18,2020 at 01:06:53 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

