
632
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

LETTER

Eager Memory Management for In-Memory Data Analytics∗

Hakbeom JANG†a), Student Member, Jonghyun BAE††, Tae Jun HAM††, Nonmembers,
and Jae W. LEE††, Member

SUMMARY This paper introduces e-spill, an eager spill mechanism,
which dynamically finds the optimal spill-threshold by monitoring the GC
time at runtime and thereby prevent expensive GC overhead. Our e-spill
adopts a slow-start model to gradually increase the spill-threshold until it
reaches the optimal point without substantial GCs. We prototype e-spill as
an extension to Spark and evaluate it using six workloads on three differ-
ent parallel platforms. Our evaluations show that e-spill improves perfor-
mance by up to 3.80× and saves the cost of cluster operation on Amazon
EC2 cloud by up to 51% over the baseline system following Spark Tuning
Guidelines.
key words: in-memory computing, spark, garbage collection, data spill

1. Introduction

Modern in-memory data analytic frameworks such as
Apache Spark [1] and Ignite [2] are rapidly gaining popu-
larity with their ability to provide orders of magnitude per-
formance improvements over Hadoop MapReduce [3] on
workloads with frequent data reuse (e.g., iterative algo-
rithms). However, this performance gain is reduced when
the memory footprint exceeds an available memory size. For
example, in case of Spark, such scenario can lead to a signif-
icant amount of garbage collection (GC) operations which
can account for nearly 50% [4] of an execution time, thus
incurring more than a 2x system slowdown.

Previous proposals address this challenge by i) adjust-
ing the working set size by tuning task granularity and paral-
lelism [5] or ii) moving large objects to outside the heap (i.e.,
JVM heap) [6]. In addition, the conventional in-memory
processing systems provide spill-mechanism that serializes
the partially created data and writes it to the local disk. Each
running task (i.e., thread) estimates the size of objects cre-
ated at runtime and triggers a spill operation when the esti-
mated volume of the task reaches a certain spill-threshold,
thus avoiding expensive GC overhead (especially for major

Manuscript received September 13, 2018.
Manuscript revised November 7, 2018.
Manuscript publicized December 11, 2018.
†The author is with the College of Information and Communi-

cation Engineering, Sungkyunkwan University, Suwon, Korea.
††The authors are with the Dept. of Computer Science and En-

gineering, Seoul National University, Seoul, Korea.
∗This work was supported by a research grant from Samsung

Electronics, by IDEC (EDA tool), and by Institute for Information
& communications Technology Promotion (IITP) grant funded by
the Korea government (MSIT) (No. B0101-17-0644, Research on
High Performance and Scalable Manycore OS).

a) E-mail: hakbeom@skku.edu
DOI: 10.1587/transinf.2018EDL8199

GC). This feature not only alleviates the memory pressure
but also improves the performance of system by avoiding
time-consuming GC operations.

However, this benefit is not always ensured. One crit-
ical issue is that the actual size of objects in Java Virtual
Machine (JVM) does not match the estimates used by the
upper-layer in-memory processing frameworks. To confirm
this point, we run a standalone Spark and measure an execu-
tion time across varying spill-thresholds on a 4-node homo-
geneous cluster. Figure 1 shows an execution time break-
down of the reduce stage in Intel HiBench TeraSort work-
load. By default, in Spark 2.1.0, the spill-threshold is set
to 60% of the JVM heap size (equal to Spark memory).
However, as shown in the figure, the run with the default
spill-threshold (the leftmost bar) still incurs considerable
GC time. Towards the right, as the spill-threshold decreases,
the GC time quickly reduces due to the reduced memory
pressure. On the other hand, a frequent spill also means that
each task needs to unnecessarily spill more data, resulting
in more compute times. In this case, default spill-threshold
×1/16 reaches its optimal point in terms of the total task ex-
ecution time.

This work introduces e-spill, an eager spill mechanism,
which dynamically finds the optimal spill-threshold by mon-
itoring the GC time at runtime and thereby preventing ex-
pensive GC operations. The proposed e-spill adopts a slow-
start model to gradually increase the spill-threshold until it
reaches the optimal point without substantial GCs. We pro-
totype e-spill as an extension to Spark and evaluate it us-
ing six workloads on three different platforms: (1) a 4-node
homogeneous cluster with 64 fat cores (Intel Xeon), (2) a
single-node Intel Knights Landing (KNL) machine with 64
thin cores (Intel Xeon Phi), and (3) a virtualized 64-node
Spark cluster on Amazon EC2 with 256 fat cores (Intel
Xeon). The proposed e-spill achieves a geomean speedup

Fig. 1 GC overhead when varying spill threshold

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers

LETTER
633

of 1.71× on a 4-node homogeneous cluster and 1.36× on a
single-node KNL machine. Furthermore, e-spill achieve a
geomean speedup of 1.30× and reduces the operating cost
by 23% on a virtualized 64-node cluster.

Our contributions can be summarized as follows:

• Analysis of the spill mechanism of Apache Spark [1], a
popular in-memory data analytic framework, as a knob
to control GC overhead
• Design and implementation of e-spill on Spark, which

dynamically finds the optimal spill-threshold by moni-
toring the GC time at runtime and avoids excessive GC
operations
• Detailed evaluation and analysis of e-spill performance

on three different parallel platforms

2. e-spill: Eager Spill Mechanism

The proposed e-spill is a low-cost runtime framework that
finds the optimal spill-threshold for in-memory processing
frameworks, to provide robust performance for various plat-
forms without requiring workload-dependent information.

2.1 Background and Overview

Data spill is the process of storing partially created interme-
diate result to a local disk during task execution to prevent
expensive GCs and OutOfMemoryErrors resulting from the
lack of Spark execution memory. A user program in Spark
is described as a sequence of operations on Resilient Dis-
tributed Datasets (RDDs), which are the primary data ab-
straction for Spark. A spill operation can occur if all data
has to be collected in a single buffer to create a shuffle file,
or if multiple RDD partitions need to temporally store inter-
mediate results to generate one RDD (e.g., Join and Zip).
Initially, Spark allocates a small buffer (e.g., 5MB) to store
the intermediate result. When the size of the buffer becomes
insufficient, it doubles the size of the buffer. The maxi-
mum size that the buffer can reach is the total Spark exe-
cution memory divided by the number of currently running
Spark worker cores. When a spill operation occurs, it se-
rializes key-value pairs stored in the buffer one by one and
flushes them to a spill file in a certain batch unit (default:
10000 key-value pairs). After all key-values pairs are writ-
ten, Spark manages the spill file as a list and allocates a new
buffer for the remaining key-value operations. This process
is repeated until all the key-values of the partition are com-
puted. After all the key-value operations are complete, the
intermediate result stored in the spill file is merged with the
remaining results in memory. The final result is stored in the
shuffle file or is passed to the next operation.

Ideally, it is possible to avoid time-consuming ma-
jor GCs by spilling objects which are located in the old-
generation heap space of JVM before the heap is full. How-
ever, in reality, the estimator often mis-predicts the volume
of the task (i.e., key-value buffer) and thus cannot effectively
avoid such major GCs. From JVM’s perspective, the spilled

Fig. 2 e-spill overview

Algorithm 1 e-spill runtime
INPUT: JVM heap size, # of available CPU cores, spill time, GC time
OUTPUT: Spill-threshold

1: while Key-value iterator has next item do
2: if First key-value pair is inserted then
3: Estimate size of first key-value pair
4: Set initial spillThreshold ∝
5: JVM heap size / # of Spark threads / key-value size
6: end if
7: Insert key-value pair in temporal buffer
8: if # of key-value pair > spillThreshold then
9: Spill occurred

10: if gcTime > spillTime * 0.1 then
11: Update spillThreshold / 2
12: else
13: Update spillThreshold * 1.25
14: end if
15: end if
16: end while

object is located in the old-generation heap space of JVM
and this object is not freed until the entire spill process is
completed. Meanwhile, Spark continues to generate small
heap objects, which occasionally get promoted to the old-
generation heap, and requests extra space there. This trig-
gers frequent major GCs [5].

The proposed e-spill mainly aims to avoid frequent ma-
jor GCs caused by spill operation due to the mis-prediction.
Figure 2 shows the overall structure of e-spill, which extends
the existing Spark’s spill-mechanism shaded in gray. The e-
spill runtime collects the spill time and GC time during task
execution to monitor the time spent on GC caused by spill
operations. To realize this, e-spill maintains a feedback loop
between the master node and worker nodes. Finally, e-spill
determines whether to increase or decrease a spill-threshold
based on the ratio of spill time to GC time.

2.2 Runtime Algorithm

The proposed e-spill runtime starts with a calibration phase
in which a slow-start model gradually increases the spill-
threshold to find the optimal threshold without GCs. Algo-
rithm 1 shows the e-spill runtime algorithm. After estimat-
ing the first <K,V> pair size, this algorithm determines an

634
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

Fig. 3 Normalized speedups on two platforms: (a) native 4-node cluster (b) manycore platform

Table 1 Setup for three evaluation platforms

Native cluster
Knights Landing

(KNL)
Amazon

EC2 cluster

CPU
Intel Xeon E5-2640v3
× 2 sockets

Intel Xeon Phi 7210
Intel Xeon
E5-2676v4

Memory 16GB DDR4 × 8
16GB MCDRAM &
32GB DDR4 × 6 16GB

Disk NVMe SSD 1.6TB NVMe SSD 1.6TB EBS 100GB

Network
40Gbps
InfiniBand

1Gbps
Ethernet

10Gbps
Ethernet

Table 2 Workload characteristics

Workloads Data Size
Cluster KNL AWS

TeraSort 128GB 80GB 1TB
PageRank pages: 25M pages: 15M pages: 100M

Sort 128GB 80GB 1TB
WordCount 240GB 128GB 5TB

Bayes
classification

pages: 20M
classes: 20K

pages: 10M
classes: 10K

pages: 160M
classes: 160K

Kmeans samples: 200M samples: 150M samples: 400M

initial spill-threshold based on a given JVM heap size and
the number of Spark worker cores. As the task executes, the
e-spill gradually increases the spill-threshold until excessive
GCs does not occur. If a spill occurs, the threshold is halved
if the ratio of the time spent on spill to GC is greater than
10%. Otherwise, if the time spent on GC is short enough
(less than 10% of the time spent on spill), e-spill increases
the spill-threshold to 1.25× the current threshold to optimize
memory usage. After a round of operation is complete, the
optimal spill-threshold found in the previous round is uti-
lized in the next round to avoid redundancy. Since the char-
acteristics of functions (transformations) are different across
computation phases (i.e., stages), e-spill does not reuse the
spill threshold across different stages and searches a new
spill-threshold from scratch.

3. Methodology

We run workloads from Intel HiBench 5.0 [7] on three dif-
ferent parallel processing platforms as shown in Table 1. Ta-
ble 2 summarizes inputs for the six applications. We com-
pare e-spill to two designs:

• Baseline: This is a vanilla Spark following Spark Tun-
ing Guidelines [8]. Each worker node has four Spark
executors, and each executor runs 4 threads with a 5GB
memory. In the KNL platform, we use four executors
and each executor runs 16 threads with a 20GB mem-
ory. Lastly, in the virtualized cluster platform, each
executor runs four threads with a 10GB memory.
• Static Optimal: We perform an exhaustive search to

find the best-performing partition count for each stage.
Such optimized partition count does not incur neither
spills nor GCs. This number serves as the (impractical)
theoretical maximum performance.

4. Evaluation

4.1 Program Speedups

On 4-node Homogeneous Cluster. Figure 3 (a) compares
the speedups of two designs over the baseline configura-
tion. The proposed e-spill achieves a geomean speedup of
1.71×, with a maximum speedup of 3.80×. More impor-
tantly, e-spill achieves the robust performance comparable
to the static optimal configuration.

The first three applications in Fig. 3 (a) are shuffle-
heavy workloads, which frequently trigger major GCs.
TeraSort and Sort use sortByKey transformation, which re-
sults in the shuffle of the large data (i.e, entire RDD) be-
tween tasks. PageRank is an iterative algorithm that joins
the intermediate output and a cached RDD and thus have
a large memory footprint. In general, shuffle-heavy work-
loads utilize a large amount of memory. The primary source
of performance improvement in e-spill is the reduced over-
head of expensive GC operations. Figure 4 shows a task
execution time breakdown of the map and reduce stage for
TeraSort (shuffle-heavy). The proposed e-spill reduces the
time spent on GC in TeraSort by 91% with only a modest
increase in spill time.

The remaining three applications are classified as
shuffle-light workloads. Their memory footprints are rela-
tively small since these applications trigger the shuffle dur-
ing a summary transformation, such as reduceByKey. For
WordCount and Bayes, e-spill achieves speedup of 1.15×
and 1.25×, respectively. In case of Kmeans, the baseline
performs well on the cluster and thus all designs show sim-
ilar performance. Overall, e-spill obtains the performance
close to the performance of the static optimal configuration.
On Single-Node Manycore Machine. Figure 3 (b) shows
the speedups of e-spill on a 64-core Intel KNL platform. For
this platform, we use smaller inputs to reduce task failures,
which occur frequently with the original input size as shown
in Table 2. Furthermore, since several programs do not run
to completion with the baseline configuration [8], we use a
slightly-tuned baseline configuration (i.e., increased number
of partitions) which allows the workloads to complete with-
out experiencing significant major GC overhead. Since the

LETTER
635

Fig. 4 Execution time breakdown for TeraSort

Fig. 5 Normalized speedups on cloud for 64-node Amazon EC2 cluster

input size and the baseline configuration are different from
those of the 4-node homogeneous cluster, the static optimal
trend is different in this configuration. Overall, e-spill also
works well on the single-node manycore system with 64 thin
cores for all workloads with a geomean speedup of 1.36×
and a maximum speedup of 2.68×.
On 64-node Amazon EC2 Cluster. We evaluate e-spill on
a 64-node Amazon EC2 cluster with 256 fat cores to confirm
the robustness of it on a large scale cluster. Figure 5 shows
performance improvements and cost reductions from e-spill
on a 64-node cluster. The result shows that e-spill achieves
a geomean speedup of 1.30× and reduces the operating cost
by 23%. Note that the operation cost is the financial cost
of running Amazon EC2 cluster for the required execution
time. To calculate the operating cost, we calculate the cost
of running the 64 m4.xlarge instances. Each node consumes
$0.246/h and $0.016/h for storage. We multiplied these val-
ues by the execution time to compute the cost.

4.2 Performance Analysis

Comparison with WASP scheduler. We compare e-
spill with WASP, a state-of-the-art Spark task scheduler [5].
WASP jointly optimizes both task granularity and paral-
lelism based on workload characteristics. WASP requires
calculation of memory amplification factor (MAF) of each
transformation function from various workloads to predict
the memory usage of each stage with the goal of avoid-
ing GC overheads. Figure 6 shows the speedup of WASP
and e-spill on a 64-node virtualized Spark cluster with three
shuffle-heavy workloads. Unlike WASP, e-spill does not re-
quire any offline profiling and outperforms it by up to 1.24×.
The main source of improvement of e-spill is the reduced
shuffle overhead. For example, we observed that WASP in-
creases the number of partitions to 512-16384 between map
and reduce stage in TeraSort. Such increase (i.e., a single
partition gets smaller), leads to a reduction in the memory
usage, and thus can eliminate GC overheads. However, such

Fig. 6 WASP scheduler [5] vs. e-spill

Fig. 7 Speedups across varying ratio of the time spent on spill to GC. All
numbers are normalized to the baseline.

increase in the number of partitions also incurs substantial
overhead for shuffle operations [9]. Since e-spill does not in-
crease the number of partitions, e-spill achieves more robust
performance than WASP for shuffle-heavy workloads.
Sensitivity on spill/GC ratio. Figure 7 shows average
speedups of three shuffle-heavy workloads across varying
ratio of the time spent on the spill to GC. Our experiment
demonstrates that 10% is the optimal value.

5. Conclusion

This paper introduces e-spill, an eager spill mechanism,
which dynamically finds the optimal spill-threshold by mon-
itoring a GC time during a runtime. Our e-spill achieves
a robust performance on three different parallel platforms
without requiring any workload-dependent tuning parame-
ters. Our evaluation on Spark shows that e-spill achieves a
geomean speedup of 1.71× on a 4-node homogeneous clus-
ter and 1.36× on a single-node KNL machine. Furthermore,
e-spill achieve a geomean speedup of 1.30× and can reduce
the operating cost of a virtualized 64-node cluster by 23%.

References

[1] “Apache Spark.” http://spark.apache.org/.
[2] “Apache Ignite.” https://ignite.apache.org/.
[3] “Apache Hadoop.” http://hadoop.apache.org/.
[4] K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu, S. Alamian, and O.

Mutlu, “Yak: A high-performance big-data-friendly garbage collec-
tor,” Proceedings of the 12th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI’16, pp.349–365, 2016.

[5] J. Bae, H. Jang, W. Jin, J. Heo, J. Jang, J.-Y. Hwang, S. Cho, and
J.W. Lee, “Jointly optimizing task granularity and concurrency for in-
memory mapreduce frameworks,” 2017 IEEE International Confer-
ence on Big Data (Big Data), pp.130–140, Dec. 2017.

[6] K. Nguyen, K. Wang, Y. Bu, L. Fang, J. Hu, and G. Xu, “Facade: A
compiler and runtime for (almost) object-bounded big data applica-
tions,” Proceedings of the Twentieth International Conference on Ar-

http://dx.doi.org/10.1109/bigdata.2017.8257921
http://dx.doi.org/10.1145/2694344.2694345

636
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

chitectural Support for Programming Languages and Operating Sys-
tems, ASPLOS ’15, New York, NY, USA, pp.675–690, ACM, 2015.

[7] “Intel HiBench.” https://github.com/intel-hadoop/HiBench.
[8] “Apache Spark: Tuning Spark.” http://spark.apache.org/ docs/latest/

tuning.html/.

[9] H. Zhang, B. Cho, E. Seyfe, A. Ching, and M.J. Freedman, “Riffle:
Optimized shuffle service for large-scale data analytics,” Proceedings
of the Thirteenth EuroSys Conference, EuroSys ’18, New York, NY,
USA, pp.43:1–43:15, ACM, 2018.

http://dx.doi.org/10.1145/2694344.2694345
http://dx.doi.org/10.1145/3190508.3190534

